Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dkwk2 Total loading time: 0.156 Render date: 2021-08-01T01:11:26.272Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Metal Electrodes Work Function Measurement at Deca-Nanometer Scale using Kelvin Probe Force Microscope: a Step Forward to the Comprehension of Deposition Techniques Impact on Devices Electrical Properties

Published online by Cambridge University Press:  01 February 2011

Nicolas Gaillard
Affiliation:
nicolas.gaillard@st.com, STMicroelectronics, BEOL Materials, 850, rue Jean Monnet, Crolles, N/A, 38926, France, +33476926381
Denis Mariolle
Affiliation:
denis.mariolle@cea.fr, CEA/GRE, CEA-DRT-LETI, 17 rue des martyrs, Grenoble, N/A, 38054, France
Francois Bertin
Affiliation:
francois.bertin@cea.fr, CEA/GRE, CEA-DRT-LETI, 17 rue des martyrs, Grenoble, N/A, 38054, France
Mickael Gros-Jean
Affiliation:
mickael.gros-jean@st.com, STMicroelectronics, 850, rue Jean Monnet, Crolles, N/A, 38926, France
Ahmad Bsiesy
Affiliation:
bsiesy@drfmc.ceng.cea.fr, Spintec Laboratory, CEA-DRFMC, 17 rue des martyrs, Grenoble, N/A, 38054, France
Get access

Abstract

In this letter, we report on Work Function (WF) measurements performed at deca-nanometer scale on various metals using Kelvin probe Force Microscope (KFM). We first demonstrated the relationship between the WF value and the grain crystallographic orientation by combining KFM and Electron Back Scattered Diffraction (EBSD) performed over the same Cu area. Once this relationship was established, KFM was used to provide, in addition to WF value, crystallographic properties of TiN PVD films grown on various substrates. Finally we characterized the effect of N2/H2 plasma treatment on the WF of TiN grown by CVD. In the latter case, the modification of the bulk chemical potential by post-treatment was proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lujan, G. S. et al., Proceedings of the 32nd ESSDERC, 583 (2002).Google Scholar
2. Alshareef, H. N. et al., Appl., Phys. Lett., 87, 052109 (2005).CrossRefGoogle Scholar
3. Yagashita, A. et al., IEEE Trans. Electron Devices, 48, 1604 (2001).CrossRefGoogle Scholar
4. Sugimura, H. et al., Appl. Phys. Lett. 80, 14591461 (2002).CrossRefGoogle Scholar
5. Mulliken, R. S., J. Chem. Phys., 2, 782 (1934).CrossRefGoogle Scholar
6. Michaelson, H. B., J. Res. Develop., 22, No. 1 (1978).Google Scholar
7. Westlinder, J. et al., Microelectron. Eng., 75, 389 (2004).CrossRefGoogle Scholar
8. Schaeffer, J. K. et al., as discussed at the 2005 IEEE SISC, Arlington, VA, USA. Google Scholar
9. Smoluchowski, R., Physical Review 60, 661674 (1941).CrossRefGoogle Scholar
10. Eastment, R. M. et al., Journal of Physics F: Metal Physics, 1738–1745 (1973).Google Scholar
11. Chelvayohan, M. et al., J. Phys. C: Solid State Phys. 15, 2305 (1982).CrossRefGoogle Scholar
12. Gartland, P.O et al., Phys. Rev. Lett., 28, 738 (1972).CrossRefGoogle Scholar
13. Hobbs, C. et al., IEEE Trans. Electron Devices, 51, No. 6, 971 (2004).CrossRefGoogle Scholar
14. Ren, C. et al., IEEE Electron Device Letters, 25, No. 3, 123 (2004).CrossRefGoogle Scholar
15. Schmutz, P. et al., J. Electrochem. Soc., 145, 7 (1998).Google Scholar
16. Gaillard, N. et al., as discussed at the 2005 IEEE SISC, Arlington, VA, USA. Google Scholar
17. Bajolet, A. et al., as discussed at the 2006 MAM conference, O9.03, Grenoble, France.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Metal Electrodes Work Function Measurement at Deca-Nanometer Scale using Kelvin Probe Force Microscope: a Step Forward to the Comprehension of Deposition Techniques Impact on Devices Electrical Properties
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Metal Electrodes Work Function Measurement at Deca-Nanometer Scale using Kelvin Probe Force Microscope: a Step Forward to the Comprehension of Deposition Techniques Impact on Devices Electrical Properties
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Metal Electrodes Work Function Measurement at Deca-Nanometer Scale using Kelvin Probe Force Microscope: a Step Forward to the Comprehension of Deposition Techniques Impact on Devices Electrical Properties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *