Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.27 Render date: 2021-12-07T07:09:05.691Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Memory effect in nanostructured Si-rich hafnia films

Published online by Cambridge University Press:  19 November 2013

L. Khomenkova
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
X. Portier
Affiliation:
CIMAP, CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
F. Gourbilleau
Affiliation:
CIMAP, CEA/CNRS/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
A.Slaoui
Affiliation:
ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
Get access

Abstract

Microstructral and charge-trap properties of single Hf-silicate dielectric films are presented versus annealing treatment. The as-grown films were found to be homogeneous and amorphous. It is shown that annealing treatment results in the formation of alternated Hf-rich and Si-rich layers. The mechanism responsible for this phenomenon is found to be surface directed spinodal decomposition. The increase of annealing temperature up to 1000-1100°C resulted in the crystallization of Hf-rich phase. The stability of its tetragonal phase caused an enhancement of film permittivity was observed. The evolution of charge trapping properties of the films results in the memory effect which nature was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).CrossRef
He, G., Zhu, L.Q., Sun, Z.Q., Wan, Q., Zhang, L.D., Progress in Materials Science 56, 475 (2011).CrossRef
Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F., Chan, K., Appl. Phys. Lett. 68, 1377 (1996).
Lee, C.H., Meeter, J., Narayanan, V., Kan, E.C., J. Electron. Mater. 34, 1 (2005).CrossRef
Perego, M., Seguini, G., Wiemer, C., Fanciulli, M., Coulon, P.-E., Bonafos, C., Nanotechnology 21, 055606 (2010).
Khomenkova, L., Sahu, B.S., Slaoui, A., Gourbilleau, F., Nanoscale Research Letters 6, 172 (2011).CrossRef
Lu, T.Z., Alexe, M., Scholz, R., Appl. Phys. Lett. 87, 202110 (2005).CrossRef
Khomenkova, L., Dufour, C., Coulon, P.-E., Bonafos, C., Gourbilleau, F., Nanotechnology 21, 095704 (2010).
Khomenkova, L., Portier, X., Cardin, J., Gourbilleau, F., Nanotechnology 21, 285707 (2010).CrossRef
Lui, J., Wu, X., Lennard, W.N., Landheer, D., Dharma-Wardana, M.W.C., J. Appl. Phys. 107, 123510 (2010).
Lin, C.-H., Keo, Y., J. Appl. Phys. 110, 024101 (2011).CrossRef
LV, Sh.-C., Ge, Zh.-Y., Zhou, Y., Xu, B., Gao, L.-G., Yin, J., Xia, Y.-D., Liu, Zh.-G., Chin. Phys. Lett. 27, 068502 (2010).
Fischer, D., Kersch, A., Appl. Phys. Lett. 92, 012908 (2008).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Memory effect in nanostructured Si-rich hafnia films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Memory effect in nanostructured Si-rich hafnia films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Memory effect in nanostructured Si-rich hafnia films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *