Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-zts5g Total loading time: 0.205 Render date: 2021-10-18T19:50:33.797Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles

Published online by Cambridge University Press:  11 February 2011

Toshiharu Makino
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–10–1 Higashimita, Tama-ku, Kawasaki 214–8501, Japan
Nobuyasu Suzuki
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–10–1 Higashimita, Tama-ku, Kawasaki 214–8501, Japan
Yuka Yamada
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–10–1 Higashimita, Tama-ku, Kawasaki 214–8501, Japan
Takehito Yoshida
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–10–1 Higashimita, Tama-ku, Kawasaki 214–8501, Japan
Ikurou Umezu
Affiliation:
Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–10–1 Higashimita, Tama-ku, Kawasaki 214–8501, Japan
Akira Sugimura
Affiliation:
Department of Physics, Faculty of Science and Engineering, Konan University, 8–9–1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan
Get access

Abstract

We have observed visible photoluminescence (PL) spectra (peak energy: 3.1 eV) of size-controlled silicon (Si) nanoparticles annealed in oxygen gas. The PL peak energy did not depend on the temperature, and the PL lifetime was relatively fast (on the order of nanoseconds). It was inferred that the visible PL was attributed to localized states in the oxidized surfaces of size-controlled Si nanoparticles. We also observed the PL excitation spectra and studied the excitation process. In order to elucidate mechanisms of the visible PL, excitation and recombination processes are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

High Technology Research Center, Konan University, 8–9–1 Okamoto, Higashinada-ku, Kobe 658–8501, Japan

References

For example, Light Emission in Silicon from Physics to Devices, edited by Lockwood, D. J. (Academic Press, 1998).Google Scholar
2. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y. H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).Google Scholar
3. Kanemitsu, Y., Futagi, T., Matsumoto, T., and Mimura, H., Phys. Rev. B 49, 14732 (1994).Google Scholar
4. Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).Google Scholar
5. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S., Appl. Phys. Lett. 72, 2987 (1998).Google Scholar
6. Makino, T., Suzuki, N., Yamada, Y., Yoshida, T., Seto, T., and Aya, N., Appl. Phys. A 69, S243 (1999).Google Scholar
7. Suzuki, N., Makino, T., Yamada, Y., Yoshida, T., and Seto, T., Appl. Phys. Lett. 78, 2043 (2001).Google Scholar
8. Makino, T., Yamada, Y., Suzuki, N., Yoshida, T., and Onari, S., J. Appl. Phys. 90, 5075 (2001).Google Scholar
9. Tohmon, R., Shimogaichi, Y., Mizuno, H., Ohki, Y., Nagasawa, K., and Hama, Y., Phys. Rev. Lett. 62, 1388 (1989).Google Scholar
10. Stathis, J. H. and Kastner, M. A., Phys. Rev. B 35, 2972 (1987).Google Scholar
11. Takeoka, S., Fujii, M, and Hayashi, S., Phys. Rev. B 62, 16820 (2000).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *