Hostname: page-component-7d684dbfc8-dh8xm Total loading time: 0 Render date: 2023-10-02T03:10:40.329Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Mechanism of Carrier Photoexcitation in Semiconducting Polymers: The Role of Electron Photoemission in “Photoconductivity” Measurements

Published online by Cambridge University Press:  21 March 2011

Daniel Moses*
Affiliation:
Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
Paulo B. Miranda
Affiliation:
Departamento de Física, Universidade Estadual Paulista, Caixa Postal 473, Bauru - SP 17015-970, Brazil
Cesare Soci
Affiliation:
Current Address INFM – Phys. Deptment, University of Pavia, Italy
Alan J. Heeger
Affiliation:
Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
*
#Corresponding author, E-mail: moses@ipos.ucsb.edu
Get access

Abstract

Ultrafast photoinduced absorption by infrared-active vibrational modes (IRAV) is used to detect charged photo-excitations (polarons) in solid films of conjugated luminescent polymers. Experiments, carried out in zero applied electric field, show that polarons are generated within 100 fs with quantum efficiencies of approximately 10%. The ultrafast photoinduced IRAV Absorption, the weak pump-wavelength dependence, and the linear dependence of charge density on pump intensity indicate that both charged polarons and neutral excitons are independently generated even at the earliest times. Measurements of the excitation profile of the transient and steady-state photoconductivity of poly(phenylene vinylene) and its soluble derivatives over a wide spectral range up to hν = 6.2 eV indicate an apparent increase in the “photoconductivity” at hν > 3-4 eV that arises from external currents generated by electron photoemission (PE). After quenching the PE by addition of CO2+SF6 (90%:10%) into the sample chamber, the bulk photoconductivity is nearly independent of photon energy in all polymers studied, in a good agreement with the IRAV spectra. The single threshold for photoconductivity is spectrally close to the onset of π-π* absorption, behavior that is inconsistent with a large exciton binding energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, M.D. McGehee e. k., Moses, D., Heeger, A. J., in Bernier, P., (ed.), “Advances in Synthetic Metals”, Elsevier, Lausanne, 1999, p. 98.Google Scholar
2. Moses, D. in “The Nature of Photoexcitations in Conjugated Polymers”, edited by Sariciftci, N.S., (ed.), (World Scientific, Singapore, 1997).Google Scholar
3. Mizrahi, U., Shtrichman, I., Gershoni, D., Ehrenfreund, E., Synth. Met. 102, 1182 (1998).CrossRefGoogle Scholar
4. Moses, D., Dogariu, A., Heeger, A.J., Phys. Rev. B 61, 9373 (2000).CrossRefGoogle Scholar
5. Barth, S. and Bässler, H., Phys. Rev. Lett. 79, 4445 (1997).CrossRefGoogle Scholar
6. Heeger, A. J., Kivelson, S., Schrieffer, J. R., Su, W.P., Rev. Mod. Phys. 60, 781 (1988).CrossRefGoogle Scholar
7. Kirova, N., Brazovskii, S., Bishop, A. R., Synth. Met. 100, 29 (1999).CrossRefGoogle Scholar
8. Däubler, T. K., Cimrova, V., Pfeiffer, S., Horhold, H., Neher, D., D. Adv. Mater. 11, 1274 (1999).Google Scholar
9. Fincher, C. R., Ozaki, M., Heeger, A. J., MacDiarmit, A. G., Phys. Rev. B 19, 4140 (1979).CrossRefGoogle Scholar
10. Horowitz, B., Solid State Commun. 41, 729 (1982).CrossRefGoogle Scholar
11. Soos, Z. G., Girlando, A., Painelli, A., Molecular Cryst. And Liq. Cryst. 256, 711 (1994).CrossRefGoogle Scholar
12. Sariciftici, N. S., Smilowitz, L., Heeger, A. J., Wudl, F., Science 258, 1474 (1992).CrossRefGoogle Scholar
13. Yu, G., Gau, J., Hummelen, J. C., Wudl, F., Heeger, A. J., Science 270, 1789 (1995).CrossRefGoogle Scholar
14. Details will be published elsewhere.Google Scholar
15. Su, W. P. and Schrieffer, J. R., Proc. Natl. Acad. Sci. USA 77, 5626 (1980).CrossRefGoogle Scholar
16. Soos, Z. G., Haiden, G. W., Girlando, A., Painelli, A. J. Chem. Phys. 100, 7144 (1994).CrossRefGoogle Scholar
17. Ruseckas, A., Theander, M., Andersson, M. R., Svensson, M., Prato, M., Inganas, O., Sundstrom, V., Chem. Phys. Lett. 322, 136 (2000).CrossRefGoogle Scholar
18. Chandross, M., Mazumdar, S., Jeglinski, S., Wei, X., Vardeny, Z. V., Kwock, E. W., Miller, T. M., Phys. Rev. B 50, 14702 (1994).Google Scholar
19. Köhler, A., Santos, D. A., Beljonne, D., Shuai, Z., Bredas, J.-L., Holmes, A. B., Kraus, A., Mullen, K., Friend, R. H., Nature 392, 903 (1998).CrossRefGoogle Scholar
20. Moses, D., Phys. Rev. B 53, 4462 (1996).CrossRefGoogle Scholar
21. Denton, G. J., Tessler, N., Stevens, M.A., Friend, R.H., Synth. Met. 102, 1008 (1999).CrossRefGoogle Scholar
22. Silva, C., Stevens, M.A., Russell, D.M., Setayesh, S., Mullen, K., Friend, R.H., Synth. Met. 116, 9 (2001).CrossRefGoogle Scholar
23. Arkhipov, V. I., Bassler, H., Gobel, E. O., Phys. Rev. Lett. 82, 1321 (1999).CrossRefGoogle Scholar
24. Wegewijs, B. R., Dicker, G., Piris, J., Garcia, A.A., M.P. De Haas, Warman, J.M., J.M Chem. Phys. Lett. 332, 79 (2000).CrossRefGoogle Scholar
25. Girardeau-Montaut, J. P. and Girardeau-Montaut, C., Appl. Phys. Lett. 62, 426 (1993).CrossRefGoogle Scholar
26. Papadoggianis, N. A. and Moustaizis, S. D., J. Phys. D: Appl. Phys. 34, 499 (2001).CrossRefGoogle Scholar
27. Itikawa, Y., Phys. Fluids 16, 831 (1973).CrossRefGoogle Scholar
28. Hake, R. D., , A. V. P. Jr., and Phelps, A. V., Phys. Rev. 158, 70 (1967).CrossRefGoogle Scholar
29. Fehsenfeld, F. C., J. Chem. Phys. 53, 2000 (1970).CrossRefGoogle Scholar
30. Bastien, F., Chatterton, P.A., Marode, E., Moruzzi, J.L., J. Phys. D: Appl. Phys. 18, 1327 (1985).CrossRefGoogle Scholar
31. Miranda, P., Moses, D., and Heeger, A. J., Phys. Rev. B, Rapid Comm. 64 (8), 81201 (2001).Google Scholar
32. Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals (Oxford University press, New York, 1982).Google Scholar
33. Enck, R. C. and Pfister, G., in “Photoconductivity and Related Phenomena”, Mort, J. and Pai, D. M., Eds., (Elsevier Scientific Publications, New York, 1976).Google Scholar
34. Arkhipov, V. I., Emelianova, E. V., and Bassler, H., Phys. Rev. Lett. 82, 1321 (1999).CrossRefGoogle Scholar
35. Arkhipov, V. I., Emelianova, E. V., and Bassler, H., Chem. Phys. Lett. 340, 517 (2001).CrossRefGoogle Scholar
36. Salaneck, W. R., Friend, R. H., and Bredae, J. L., Phys. Reports 319, 231 (1999).CrossRefGoogle Scholar