Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:49:25.263Z Has data issue: false hasContentIssue false

Materials Challenges for CMOS Junctions

Published online by Cambridge University Press:  17 March 2011

William J. Taylor
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Michael J. Rendon
Affiliation:
Motorola CMOS Platform Device Development Mail Drop K-10, 3501 Ed Bluestein Blvd., Austin, Texas, USA, 78721
Eric Verret
Affiliation:
Motorola CMOS Platform Device Development Mail Drop K-10, 3501 Ed Bluestein Blvd., Austin, Texas, USA, 78721
Jack Jiang
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Cristiano Capasso
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Dave Sing
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Jen-Yee Nguyen
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
James Smith
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Eric Luckowski
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Arturo Martinez
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Jamie Schaeffer
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Phil Tobin
Affiliation:
Motorola Advanced Products R&D Lab, Austin, Texas, USA 78721
Get access

Abstract

Against a backdrop of the latest ITRS predictions for CMOS junctions, we compare methods for dopant introduction and activation, methods for making contact to these regions, and methods for measurement of material and device properties. As activation without diffusion (sub-melt laser, capacitor discharge flash, or solid phase epitaxy) becomes more feasible, the burden on Xj, Rsh and abruptness falls on the implanters, and the process margin appears slim, opening the door for other methods of doping. For contact resistance, a major component of transistor parasitics, we find that either a move to a different substrate, or from a single midgap silicide to two band-edge metals/silicides can be quite beneficial. Through the use of simple test structures, we describe a means of extracting each component of the parasitic resistance, facilitating development of materials for CMOS junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiconductor Industry Association, International Technology Roadmap for Semiconductors, San Jose, CA, 2003 http://public.itrs.net/Files/2003ITRS/Home2003.htmGoogle Scholar
2. Gossmann, H.-J., supporting notes for Lateral Abruptness, of Ref. [1].Google Scholar
3. Kwong, M.Y., Kasnavi, R., Griffin, P., Plummer, J.D., Dutton, R.W., IEEE Trans. Elect. Dev. 49, 1882 (2002).Google Scholar
4. Villanueva, D., Pouydebasque, A., Robilliart, E., Skotnicki, T., Fuchs, E., Jaouen, H., in International Electron Devices Meeting Technical Digest 2003, p.237 (2003).Google Scholar
5. Goto, K., Matsuo, J., Tada, K, Sugii, T., Yamada, I., IEEE Trans. Electr. Dev. 46, 683 (1999).Google Scholar
6. Bourdelle, K.K., Agarwal, A., Perel, A.S., Electron. Lett. 39, 807 (2003)Google Scholar
7. Lenoble, D., Grouillet, A.; Boeuf, F.; Skotnicki, T.; Hacker, D.; Scheuer, J., Walther, S., Brown, B., Alford, T., Nastasi, M., Vella, M., 14th International Conference on Ion Implantation Technology Proceedings (IEEE Cat. No.02EX505) p.36(2003)Google Scholar
8. Zhao, C. (personal communication).Google Scholar
9. Lindsay, R., Severi, S., Pawlak, B. J., Henson, K., Lauwers, A., Pages, X., Satta, A., Surdeanu, R., Lendzian, H., Maex, K., in Extended Abstracts of Fourth International Workshop on Junction Technology, edited by Qu, X.-P., Ru, G.-P., Li, B.-Z., Mizuno, B., Iwai, H., (Fudan Univ. Press, Shanghai, 2003) p. 70.Google Scholar
10. Taylor, W.J., Orlowski, M., Gilmer, D.C., Alluri, P.V., Hobbs, C.C., Rendon, M.J., Clejan, I.R., U.S. Patent No. 6573160 (3 June 2003)Google Scholar
11. Ozturk, M.C., Liu, J., Mo, H., in International Electron Devices Meeting Technical Digest 2003, p.497 (2003).Google Scholar
12. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., Bohr, M., in International Electron Devices Meeting Technical Digest 2003, p.978 (2003).Google Scholar
13. Allen, L.P.; Caliendo, S.; Hofmeester, N.; Harrington, E.; Walsh, M.; Tabat, M.; Tetreault, T.G.; Degenkolb, E.; Santeufemio, C., 2002 IEEE International SOI Conference. Proceedings (Cat. No.02CH37347) p.192–3 2002 Google Scholar
14. Fenner, D.B.; Hautala, J.; Allen, L.P.; Greer, J.A.; Skinner, W.J.; Budnick, J.I.; Daniels, B.J.; Nolan, T.P.; Seigler, M.A.; Wang, S.X.; Murray, C.B. Magnetic Materials, Structures and Processing for Information Storage. Symposium (Materials Research Society Symposium Proceedings Vol.614) p.F10.3.16 2001 Google Scholar
15. Toyoda, N.; Matsui, S.; Yamada, I. Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers) vol.41, no.6B p.4287–90 June 2002 Google Scholar
16. Toyoda, N.; Yamada, I.; Brown, B.; Alford, T.L.; Nastasi, M.; Vella, M.C. 2002 14th International Conference on Ion Implantation Technology Proceedings (IEEE Cat. No.02EX505) p.701–4 2003 Google Scholar
17. Borland, J.O., Hautala, J., Tabat, M., Gwinn, M., Tetreault, T., Skinner, W., to be published Sol. St. Tech. May, 2004.Google Scholar
18. Fenner, D.B.; Dean, D.W.; DiFilippo, V.; Allen, L.P.; Hautala, J.; Mirkarimi, P.B. Ion Beam Synthesis and Processing of Advanced Materials. Symposium. (Materials Research Society Symposium Proceedings Vol.647) p.O5.2.16 2001 Google Scholar
19. Thurber, W.R., Mattis, R.L., Liu, Y.M., National Bureau of Standards Special Publication 400–64, 42 (1981)Google Scholar
20. Taylor, William J. Jr., Smith, James, Nguyen, Jen-Yee, Rai, Raghaw, Adetutu, Olubunmi, Geren, James, Ybarra, Juan, Petru, David, in ULSI Process Integration III, edited by Claeys, C.I. (Electrochemical Society, Pennington, NJ, 2003) pg. 278.Google Scholar
21. Taylor, W.J., Verret, E., Capasso, C., Nguyen, J.-Y., La, L.B., Luckowski, E., Martinez, A., Happ, C., Schaeffer, J., Raymond, M., Tobin, P. in Extended Abstracts of Fourth International Workshop on Junction Technology, edited by Qu, X.-P., Ru, G.-P., Li, B.-Z., Mizuno, B., Iwai, H., (Fudan Univ. Press, Shanghai, 2003) p. 107.Google Scholar
22. Osburn, C.M. and Bellur, K.R., Thin Solid Films 332, (1998) 428.Google Scholar
23. Keys, P.H., Gossmann, H.-J., Ng, K.K., Rafferty, C.S., Superlattices and Microstructures 27, 125 (1999).Google Scholar
24. Kim, S.D., Park, C.-M., and Woo, J.C.S., International Electron Devices Meeting Tech. Digest., (2000) p. 723 Google Scholar
25. Ozturk, M.C., Liu, J., Mo, H., Pesovic, N. in International Electron Devices Meeting Technical Digest 2002, p.375 (2002).Google Scholar
26. Gutai, L., IEEE Trans. Elect. Dev. 37, (1990) 2350 Google Scholar