Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.236 Render date: 2021-12-09T14:40:42.557Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates

Published online by Cambridge University Press:  17 March 2011

K. Nielsch
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
R.B. Wehrspohn
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
S.F. Fischer
Affiliation:
Max-Planck-Institute of Metal Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
H. Kronmüller
Affiliation:
Max-Planck-Institute of Metal Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
J. Barthel
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
J. Kirschner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

Ni nanowires were grown in highly-ordered anodic alumina templates using pulsed electrodeposition. This technique yields completely metal-filled alumina membranes. The magnetic behavior of 100 nm period arrays of Ni nanowires with a length of 1 μ and different diameters has been characterized using SQUID magnetometry and magnetic force microscopy. Reducing the diameter from initially 50 to 25 nm while keeping the interwire distance constant leads to increasing coercive fields from 600 Oe to 1200 Oe and to increasing remanence from 30% to 100% of the hysteresis. The deposition of Ni65Fe35 gave a further improvement of the coercive fields up to 1350 Oe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weller, D. and Moser, A., IEEE Trans. Magn., 35, 4423 (1999).CrossRefGoogle Scholar
2. O'Barr, R., Yamamoto, S.Y., Schultz, S., Xu, W., and Scherer, A., J. Appl. Phys., 81, 4730 (1997).CrossRefGoogle Scholar
3. Ross, C.A., Smith, H.I., Savas, T.A., Schattenberg, M., Farhoud, M., Hwang, M., Walsh, M., Abraham, M.C., and Ram, R.J., J. Vac. Sci. Technol., B 17, 3159 (1999).Google Scholar
4. Hwang, M., Abraham, M.C., Savas, T.A., Smith, H.I., Ram, R.J., and Ross, C.A., J. Appl. Phys., 87, 5108 (2000).CrossRefGoogle Scholar
5. Raabe, J., Pulwey, R., Sattler, R., Schweinböck, T., Zweck, J., and Weiss, D., J. Appl. Phys., 88, 4437 (2000).CrossRefGoogle Scholar
6. Nielsch, K., Müller, F., Li, A.P., and Gösele, U., Adv. Mater., 12, 582 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
7. Li, A.P., Müller, F., and Gösele, U., Electrochem. Soc. Lett., 3, 131 (2000).CrossRefGoogle Scholar
8. Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T., Appl. Phys. Lett. 71, 2770 (1997).CrossRefGoogle Scholar
9. Masuda, H. and Fukuda, K., Science, 268, 1466 (1995).CrossRefGoogle Scholar
10. Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Appl. Phys., 84, 6023 (1998).CrossRefGoogle Scholar
11. Wehrspohn, R.B., Li, A.P., Nielsch, K., Müller, F., Erfurth, W. and Gösele, U., The Electrochemical Society Proceedings Series, PV 2000–4, Pennington, NJ (2000), 271.Google Scholar
12. Nielsch, K., Wehrspohn, R.B., Barthel, J., Kirschner, J., Gösele, U., Fischer, S. F., and Kronmüller, H., submitted to Appl. Phys. Lett. Google Scholar
13. Hertel, R., unpublished resultsGoogle Scholar
14. Ounadjela, K., Ferré, R., Louail, L., George, J. M., and Maurice, J.L., Piraux, L., Dubois, S., J. Appl. Phys., 81, 5455 (1997).CrossRefGoogle Scholar
15. Zheng, M., Menon, L., Zeng, H., Liu, Y., Bandyopadhyay, S., Kirby, R.D., and Sellmyer, D.J., Phys. Rev. B, 62, 12282 (2000).CrossRefGoogle Scholar
16. Strijkers, G.J., Dalderop, J.H.J., Broeksteeg, M.A.A., Swagten, H.J.M., and Jonge, W.J.M. de, J. Appl. Phys, 86, 5141 (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *