Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.228 Render date: 2022-08-17T14:44:20.063Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Magnetic Nanocomposite Aerogels

Published online by Cambridge University Press:  28 January 2011

Anna Corrias
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Danilo Loche
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Maria F. Casula
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Get access

Abstract

Aerogels are regarded as ideal candidates for the design of functional nanocomposites containing supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading, to provide nanoparticle accessibility and/or to prevent nanoparticle agglomeration, as required to supply their specific functionalities.

The preparation of highly porous nanocomposite aerogels containing magnetic metal, alloy or metal oxide nanoparticles dispersed into amorphous silica, with high purity and homogeneity, was successfully achieved by a novel sol-gel procedure involving urea-assisted co-gelation of the precursor phases. This method allows fast gelation, giving rise to aerogels with 97% porosity, and it is very versatile allowing to vary composition, loading and average size of the nanoparticles.

The characterization of the morphological and structural features of the nanocomposite aerogels is carried out using different techniques, such as X-ray diffraction, Transmission Electron Microscopy and X-ray Absorption Spectroscopy. The characterization of the magnetic properties is carried out by SQUID magnetometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hüsing, N. and Schubert, U., Angew. Chem. Int. Ed. 37, 22 (1998).10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I3.0.CO;2-I>CrossRef3.0.CO;2-I>Google Scholar
2. Pierre, A.C. and Pajonk, G.M., Chem. Rev. 102, 4243 (2002)10.1021/cr0101306CrossRefGoogle Scholar
3. Gich, M., Casas, L. I., Roig, A., Molins, E., Sort, J., Surinach, S., Barò, M.D., Munoz, J.S., Morellon, L., Ibarra, M.R. and Noguès, J., Appl. Phys. Lett. 82, 4307 (2003).10.1063/1.1578538CrossRefGoogle Scholar
4. Congiu, F., Concas, G., Ennas, G., Falqui, A., Fiorani, D., Marongiu, G., Marras, S., Spano, G. and Testa, A.M., J. Magn. Magn. Mater. 272, 1561 (2005)Google Scholar
5. Hutlova, A., Niznansky, D., Rehspringer, J- L., Estournes, C. and Kurmoo, M., Adv. Mat. 15, 1622 (2003).10.1002/adma.200305305CrossRefGoogle Scholar
6. Raj, K., Moskowitz, R. and Casciari, R.;, J. Magn. Magn. Mater. 149, 174 (1995).10.1016/0304-8853(95)00365-7CrossRefGoogle Scholar
7. Haefeli, U., Schuett, W., Teller, J. and Zborowski, M., Eds. Scientific and Clinical Applications of Magnetic Carriers (Plenum, 1997).10.1007/978-1-4757-6482-6CrossRefGoogle Scholar
8. Kryder, M.H., MRS Bull. 21, 17 (1996).10.1557/S0883769400036319CrossRefGoogle Scholar
9. Ayers, M.R., Song, X.Y. and Hunt, A.J., J. Mater. Sci. 31, 6251 (1996).10.1007/BF00354446CrossRefGoogle Scholar
10. Casas, L.I., Roig, A., Molins, E., Greneche, J.M., Asenjo, J. and Tejada, J., Appl. Phys. A, 74, 591 (2002).10.1007/s003390100948CrossRefGoogle Scholar
11. Cannas, C., Casula, M.F., Concas, G., Corrias, A., Gatteschi, D., Falqui, A., Musinu, A., Sangregorio, C. and Spano, G. J. Mater. Chem. 11, 3180 (2001).10.1039/b104562hCrossRefGoogle Scholar
12. Saad, A. M., Mazanik, A. V., Kalinin, Yu. E., Fedotova, J. A., Fedotov, A. K., Wrotek, S., Sitnikov, A. V., Svito, I. A., Rev. Adv. Mater. Sci. 8, 152A (2004).Google Scholar
13. MacLaren, J. M., Schulthness, T. C., Butler, B. H., Sutton, R., McHenry, M., J. Appl. Phys. 85, 4833 (1999).10.1063/1.370036CrossRefGoogle Scholar
14. Casula, M. F., Corrias, A., Paschina, G., J. Mater. Chem. 12, 1505 (2002).10.1039/b110093aCrossRefGoogle Scholar
15. Casula, M. F., Corrias, A., Falqui, A., Serin, V., Gatteschi, D., Sangregorio, C., De Julian Fernandez, C., Battaglin, G., Chem. Mater. 15, 2201 (2003).10.1021/cm0217755CrossRefGoogle Scholar
16. Casula, M.F., Concas, G., Congiu, F., Corrias, A., Falqui, A., Spano, G., J. Phys. Chem. B 109, 23888 (2005).10.1021/jp0546554CrossRefGoogle Scholar
17. Dormann, J. L., Bessais, L., Fiorani, D., J. Phys. C: Solid State Phys. 21, 2015 (1988).10.1088/0022-3719/21/10/019CrossRefGoogle Scholar
18. Vestal, C.R., Song, Q., Zhang, Z.J., J. Phys. Chem. B, 108, 18222 (2004).10.1021/jp0464526CrossRefGoogle Scholar
19. Buschow, K. H. J., Handbook of Magnetic Materials (North-Holland, 1995) Vol. 8, p 212.Google Scholar
20. Skomski, R. J., Phys.: Condens. Matter 15, r841 (2003).Google Scholar
21. Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Marras, S., Sangregorio, C., Phys. Chem. Chem. Phys 10, 1043 (2008).10.1039/B712719GCrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Nanocomposite Aerogels
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Magnetic Nanocomposite Aerogels
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Magnetic Nanocomposite Aerogels
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *