Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T19:47:23.665Z Has data issue: false hasContentIssue false

Magnetic Force Microscopy: Recent Advances and Applications

Published online by Cambridge University Press:  21 February 2011

Ken Babcock
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Matthew Dugas
Affiliation:
Advanced Research Corp., 815–14th Ave., SE, Minneapolis, MN55414
Scott Manalis
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Virgil Elings
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Get access

Abstract

We review the principles of magnetic force microscopy and describe recent advances in imaging methods and probes. Some current applications of MFM in experimental micromag-netism and materials development are also discussed, as well as challenges in image interpretation and in using MFM for quantitative work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, Y. and Wlckramasinghe, H.K., Appl. Phys. Lett. 50, 1455 (1987).Google Scholar
2. Rugar, D., Mamin, H.J., Guethner, P., Lambert, S.E., Stern, J.E., McFadyen, I., and Yogi, T., J. Appl. Phys. 68, 1169 (1990).Google Scholar
3. Grütter, P., Mamin, H.J., and Rugar, D., Scanning Probe Microscopy II (1991);Google Scholar
Grutter, P., MSA Bulletin 24, 416 (1994).Google Scholar
4. Grütter, P., Rugar, D., Martin, H.J., Castillo, G., Lambert, S.E., Lin, C.J., Wolter, O., Bayer, T., and Greschner, J., Appl. Phys. Lett 57, 1820 (1990);Google Scholar
Wolter, O., Bayer, Th., and Greschner, J., J. Vac. Sci. Technol. B 9, 1353 (1991).Google Scholar
5. Babcock, K., Dugas, M., Elings, V., and Loper, S., IEEE Trans. Mag., 30, 4503 (1994).Google Scholar
6. Babcock, K., Data Storage 1, 43 (1994);Google Scholar
Babcock, K., Photonics Spectra 28, 148 (1994).Google Scholar
7. Hug, H.J., Moser, A., Jung, Th., Fritz, O., Wadas, A., Parashikov, I., and Giintherodt, H.-J., Rev. Sci. Instrum. 67, 2920 (1993).Google Scholar
8. Multimode, Nanoprobe, Tappingmode, and Liftmode are trademarks of Digital Instruments. Tapping- Mode and LiftMode, V. Elings and J. Gurley, U.S. Patent Nos. 5,266,801 and 5,308,974, Digital Instruments, Santa Barbara, CA.Google Scholar
9. Rugar, D. and Hansma, P., “Atomic Force Microscopy”, Physics Today, 43, p. 23 (1990).Google Scholar
10. Sarid, D., 1991, Scanning Force Microscopy, 1991, (Oxford University Press, New York).Google Scholar
11. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V.B., Surf. Sci. Lett. 290 (1993) L688.Google Scholar
12. Hobbs, P.C.D., Abraham, D.W., and Wickramasinghe, H.K., Appl. Phys. Lett. 55, 2357 (1989).Google Scholar
13. Bryant, P., Schultz, S., and Fredkin, D.R., J. Appl. Phys. 69, 5877 (1991).Google Scholar
14. Mamin, H.J., Rugar, D., Stern, J.E., Fontana, R.E. Jr, and Kam, P., Appl. Phys. Lett. 55, 318 (1989).Google Scholar
15. Rave, W., Belliard, L., Labrune, M., Thiaville, A., and Miltat, J., IEEE Trans. Mag. 30, 4473 (1994).Google Scholar
16. Allenspach, R., Salemink, H., Bischof, A., and Weibel, E., Z. Phys. B 67, 125 (1987);Google Scholar
Moreland, J. and Rice, P., J. Appl. Phys. 70, 520 (1991);Google Scholar
Gomez, R.D., Burke, E.R., Adly, A.A., and Mayergoyz, I.D., Appl. Phys. Lett. 60, 906 (1992).Google Scholar
17. Schönenberger, C., Alvarado, S.F., Lambert, S.E., and Sanders, I.L., J. Appl. Phys. 67 (12), 1990.Google Scholar
18. Proksch, R.B., Foss, S., Dahlberg, E.D., and Prinz, G., JAP. 75, 5776 (1993).Google Scholar
19. Proksch, R.B., Foss, S., and Dahlberg, E.D., IEEE Trans. Mag. 30, 4467 (1994).Google Scholar
20. Grütter, P., Jung, Th., Heinzelmann, H., Wadas, A., Meyer, E., Hidber, H.-R., and Güntherodt, H.-J., J. Appl. Phys. 67, 1437 (1990).Google Scholar
21. Wadas, A. and Grütter, P., Phys. Rev. B 39, 12013, (1989).Google Scholar
22. Hartmann, U., Phys. Rev. B 40, 7421 (1989).Google Scholar
23. Liesl Folks, private communication; and “Magnetic Force Microscopy Images of High-Coercivity Permanent magnets”, Folks, L., Street, R., Woodward, R., and Babcock, K., in preparation.Google Scholar
24. Proksch, R., Moskowitz, B., Dahlberg, E.D., Schaeffer, T., Bazylinski, D.A., Frankell, R.B., “Magnetic Force Microscopy of the Submicron Magnetic Assembly in a Magnetotactic Bacterium”, submitted to Appl. Phys. Lett.Google Scholar
25. Folks, L., Street, R., and Woodward, R.C., Appl. Phys. Lett. 65, 910 (1994).Google Scholar
26. Gibbs, M.R.J., Rainforth, W.M., Davies, H.A., Babcock, K., Chapman, J.N., and Heyderman, L.J., “A Comparison of Domain Images Obtained With a Magnetic Force Microscope and High Resolution Transmission Electron Microscopy”, in preparation.Google Scholar
27. Zhu, J.G., Luo, Y., Ding, J., IEEE Trans. Mag. 30, 4242 (1994).Google Scholar
28. Ohkubo, T., Kishigami, J., Yanagisawa, K., and Kaneko, R., IEEE Transactions on Magnetics 6, 5286 (1991); and IEEE Trans. J. on Mag. in Jap. 8, 245 (1993).Google Scholar
29. Goddenhenrich, T., Hartmann, U., and Heiden, C., Ultramicroscopy 42, 256 (1992).Google Scholar
30. Manalis, S., Babcock, K., Dugas, M., Massie, J., and Elings, V., “Submicron Studies of Recording Media Using Thin-Film Magnetic Scanning Probes”, submitted to Appl. Phys. Lett.Google Scholar
31. Fredkin, D.R., Koehler, T.R., Smyth, J.F., Schultz, S., J. Appl. Phys. 69, 5276 (1991);Google Scholar
Gibson, G.A., Schultz, S., J. Appl. Phys 73, 4516 (1993).Google Scholar
32. New, R.M.H., Pease, R.F.W., and White, R.L., “Physical and Magnetic Properties of Submicron Lithographically Patterned Magnetic Islands”, J. Vac. Sci. Tech. B, to be published.Google Scholar