Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-nrv4r Total loading time: 0.257 Render date: 2021-07-25T19:50:33.833Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Magnetic Force Microscopy: Recent Advances and Applications

Published online by Cambridge University Press:  21 February 2011

Ken Babcock
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Matthew Dugas
Affiliation:
Advanced Research Corp., 815–14th Ave., SE, Minneapolis, MN55414
Scott Manalis
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Virgil Elings
Affiliation:
Digital Instruments, Inc., 520 E. Montecito St., Santa Barbara, CA 93103
Get access

Abstract

We review the principles of magnetic force microscopy and describe recent advances in imaging methods and probes. Some current applications of MFM in experimental micromag-netism and materials development are also discussed, as well as challenges in image interpretation and in using MFM for quantitative work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Martin, Y. and Wlckramasinghe, H.K., Appl. Phys. Lett. 50, 1455 (1987).CrossRefGoogle Scholar
2. Rugar, D., Mamin, H.J., Guethner, P., Lambert, S.E., Stern, J.E., McFadyen, I., and Yogi, T., J. Appl. Phys. 68, 1169 (1990).CrossRefGoogle Scholar
3. Grütter, P., Mamin, H.J., and Rugar, D., Scanning Probe Microscopy II (1991);Google Scholar
Grutter, P., MSA Bulletin 24, 416 (1994).Google Scholar
4. Grütter, P., Rugar, D., Martin, H.J., Castillo, G., Lambert, S.E., Lin, C.J., Wolter, O., Bayer, T., and Greschner, J., Appl. Phys. Lett 57, 1820 (1990);CrossRefGoogle Scholar
Wolter, O., Bayer, Th., and Greschner, J., J. Vac. Sci. Technol. B 9, 1353 (1991).CrossRefGoogle Scholar
5. Babcock, K., Dugas, M., Elings, V., and Loper, S., IEEE Trans. Mag., 30, 4503 (1994).CrossRefGoogle Scholar
6. Babcock, K., Data Storage 1, 43 (1994);Google Scholar
Babcock, K., Photonics Spectra 28, 148 (1994).Google Scholar
7. Hug, H.J., Moser, A., Jung, Th., Fritz, O., Wadas, A., Parashikov, I., and Giintherodt, H.-J., Rev. Sci. Instrum. 67, 2920 (1993).CrossRefGoogle Scholar
8. Multimode, Nanoprobe, Tappingmode, and Liftmode are trademarks of Digital Instruments. Tapping- Mode and LiftMode, V. Elings and J. Gurley, U.S. Patent Nos. 5,266,801 and 5,308,974, Digital Instruments, Santa Barbara, CA.Google Scholar
9. Rugar, D. and Hansma, P., “Atomic Force Microscopy”, Physics Today, 43, p. 23 (1990).CrossRefGoogle Scholar
10. Sarid, D., 1991, Scanning Force Microscopy, 1991, (Oxford University Press, New York).Google Scholar
11. Zhong, Q., Inniss, D., Kjoller, K., and Elings, V.B., Surf. Sci. Lett. 290 (1993) L688.Google Scholar
12. Hobbs, P.C.D., Abraham, D.W., and Wickramasinghe, H.K., Appl. Phys. Lett. 55, 2357 (1989).CrossRefGoogle Scholar
13. Bryant, P., Schultz, S., and Fredkin, D.R., J. Appl. Phys. 69, 5877 (1991).CrossRefGoogle Scholar
14. Mamin, H.J., Rugar, D., Stern, J.E., Fontana, R.E. Jr, and Kam, P., Appl. Phys. Lett. 55, 318 (1989).CrossRefGoogle Scholar
15. Rave, W., Belliard, L., Labrune, M., Thiaville, A., and Miltat, J., IEEE Trans. Mag. 30, 4473 (1994).CrossRefGoogle Scholar
16. Allenspach, R., Salemink, H., Bischof, A., and Weibel, E., Z. Phys. B 67, 125 (1987);CrossRefGoogle Scholar
Moreland, J. and Rice, P., J. Appl. Phys. 70, 520 (1991);CrossRefGoogle Scholar
Gomez, R.D., Burke, E.R., Adly, A.A., and Mayergoyz, I.D., Appl. Phys. Lett. 60, 906 (1992).CrossRefGoogle Scholar
17. Schönenberger, C., Alvarado, S.F., Lambert, S.E., and Sanders, I.L., J. Appl. Phys. 67 (12), 1990.CrossRefGoogle Scholar
18. Proksch, R.B., Foss, S., Dahlberg, E.D., and Prinz, G., JAP. 75, 5776 (1993).Google Scholar
19. Proksch, R.B., Foss, S., and Dahlberg, E.D., IEEE Trans. Mag. 30, 4467 (1994).CrossRefGoogle Scholar
20. Grütter, P., Jung, Th., Heinzelmann, H., Wadas, A., Meyer, E., Hidber, H.-R., and Güntherodt, H.-J., J. Appl. Phys. 67, 1437 (1990).CrossRefGoogle Scholar
21. Wadas, A. and Grütter, P., Phys. Rev. B 39, 12013, (1989).CrossRefGoogle Scholar
22. Hartmann, U., Phys. Rev. B 40, 7421 (1989).CrossRefGoogle Scholar
23. Liesl Folks, private communication; and “Magnetic Force Microscopy Images of High-Coercivity Permanent magnets”, Folks, L., Street, R., Woodward, R., and Babcock, K., in preparation.Google Scholar
24. Proksch, R., Moskowitz, B., Dahlberg, E.D., Schaeffer, T., Bazylinski, D.A., Frankell, R.B., “Magnetic Force Microscopy of the Submicron Magnetic Assembly in a Magnetotactic Bacterium”, submitted to Appl. Phys. Lett.Google Scholar
25. Folks, L., Street, R., and Woodward, R.C., Appl. Phys. Lett. 65, 910 (1994).CrossRefGoogle Scholar
26. Gibbs, M.R.J., Rainforth, W.M., Davies, H.A., Babcock, K., Chapman, J.N., and Heyderman, L.J., “A Comparison of Domain Images Obtained With a Magnetic Force Microscope and High Resolution Transmission Electron Microscopy”, in preparation.Google Scholar
27. Zhu, J.G., Luo, Y., Ding, J., IEEE Trans. Mag. 30, 4242 (1994).CrossRefGoogle Scholar
28. Ohkubo, T., Kishigami, J., Yanagisawa, K., and Kaneko, R., IEEE Transactions on Magnetics 6, 5286 (1991); and IEEE Trans. J. on Mag. in Jap. 8, 245 (1993).CrossRefGoogle Scholar
29. Goddenhenrich, T., Hartmann, U., and Heiden, C., Ultramicroscopy 42, 256 (1992).CrossRefGoogle Scholar
30. Manalis, S., Babcock, K., Dugas, M., Massie, J., and Elings, V., “Submicron Studies of Recording Media Using Thin-Film Magnetic Scanning Probes”, submitted to Appl. Phys. Lett.Google Scholar
31. Fredkin, D.R., Koehler, T.R., Smyth, J.F., Schultz, S., J. Appl. Phys. 69, 5276 (1991);CrossRefGoogle Scholar
Gibson, G.A., Schultz, S., J. Appl. Phys 73, 4516 (1993).CrossRefGoogle Scholar
32. New, R.M.H., Pease, R.F.W., and White, R.L., “Physical and Magnetic Properties of Submicron Lithographically Patterned Magnetic Islands”, J. Vac. Sci. Tech. B, to be published.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Force Microscopy: Recent Advances and Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic Force Microscopy: Recent Advances and Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic Force Microscopy: Recent Advances and Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *