Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-r9chl Total loading time: 0.194 Render date: 2021-06-19T13:38:44.953Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Luminescence from SiOx Nanoclusters

Published online by Cambridge University Press:  28 February 2011

Paul wickboldt
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Hyeonsik M. Cheong
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Dawen Pang
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Joseph H. Chen
Affiliation:
Department of Physics, Boston College, Chestnut Hill, MA 02167
William paul
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

SiOx nanoclusters (7 nm to 17 nm) are produced by evaporation of SiO (or Si) in Ar (+O2) atmospheres. Room temperature photoluminescence (PL) measurements in vacuum reveal a broad band centered at 1.65 eV. Upon exposure to gas this PL band is extinguished in a matter of seconds, and another band centered at 2.12 eV appears. This effect occurs regardless of the gas used (He, Ar, N2, O2, H2O vapor or air) and is entirely reversible upon evacuation.

Transmission electron microscopy (TEM), Raman, infrared transmission, and X-ray photoluminescence spectroscopy (XPS) measurements are used to characterize the clusters. They are noncrystalline, and the oxidation state is a suboxide rather than SiO2 The PL spectra are independent of cluster size. The PL does not occur without sufficient oxidation and does not require the presence of bonded hydrogen. We are led to speculate that the radiative recombination occurs in electron states derived from a suboxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Canham, L.T., Appl. Phys. Lett. 57 (10), 1046 (1990).CrossRefGoogle Scholar
2 See for example: Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E. and Searson, P.C., Phys. Rev. B 45, 13788 (1992); M.S. Brandt, H.D. Fuchs, M. Stutzmann, J. Weber and M. Cardona, Solid State Commun. 81 (4), 307 (1992); F. Koch, V. Petrova-Koch, T.Muschik, A. Nikolov, and V. Gavrilenko, Mat. Res. Soc. Symp. Proc. 283, 197 (1992); and Y. Kanemitsu, Phys. Rev. B 48, 12357 (1993)CrossRefGoogle Scholar
3 See for example: Macaulay, J.M., Ross, F.M., Searson, P.C., Sputz, S.K., People, R., and Friedersdorf, L.E., Mat. Res. Soc. Symp. Proc. 256, 47 (1992).CrossRefGoogle Scholar
4 Nozaki, S., Sato, S., Ono, H. and Morisaki, H., presented at the 1994 Spring Meeting of the Materials Research Society, Symposium V: Nano-Structured Materials, San Fransisco, April 4-8, 1994 (unpublished).Google Scholar
5 Morisaki, H., Ping, F.W., Ono, H. and Yazawa, K., J. Appl. Phys. 70 (3), 1869 (1991).CrossRefGoogle Scholar
6 Hollinger, G. and Himpsel, F. J., Appl. Phys. Lett. 44 (1), 93 (1984).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Luminescence from SiOx Nanoclusters
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Luminescence from SiOx Nanoclusters
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Luminescence from SiOx Nanoclusters
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *