Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.25 Render date: 2021-12-04T05:56:27.478Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application

Published online by Cambridge University Press:  01 February 2011

Joong Hyun Park
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Chang Yeon Kim
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Kwang Sub Shin
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Sang Geun Park
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Min Koo Han
Affiliation:
School of Electrical Engineering and Computer Science (#50), Seoul National University San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea
Get access

Abstract

We have proposed low hydrogen concentration (CH) silicon nitride (SiNX) as a dielectric for flexible display application. The fabrication temperature on plastic substrate is limited below Tg (glass transition temperature, typically 130˜180 °C) and it was reported that CH in thin film is strongly depends on fabrication temperature. As the fabrication temperature is decreasing, hydrogen concentration is increasing. SiNX deposited in ultra low temperature (< 150 °C) has high CH which is porous, low density. Our experimental results using SiH4, He, N2 gas mixture shows that in the SiNX CH is less than 15 at.%. Breakdown voltage of proposed SiNX dielectric is 5 MV/cm. In the wet etch rate test using a nitride etching solution, He dilution is more dense than NH3 dilution. This process approach is useful for flexible display application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gleskova, H., Wagner, S., Gasparik, V. and Kovac, P., Applied Surface Science 175-176, 1216 (2001).10.1016/S0169-4332(01)00050-2CrossRefGoogle Scholar
2C. -S. Yang, Smith, L. L., Arthur, C. B. and Parsons, G.N., J. Vac. Sci. Technol. B 18(2), 683, (2000).Google Scholar
3 Yang, G.-R., Y-P. Zhao, Hu, Y.Z., Chow, T. Paul and Gutmann, Ronald J., Thin Solid Films 333, 219223, (1998).10.1016/S0040-6090(98)00818-9CrossRefGoogle Scholar
4 Klein, Tonya M., Anderson, Timothy M., Chowdhury, Ashfaqul I. and Parsons, Gregory N., J. Vac. Sci. Technol. A 17(1), 108, (1999).10.1116/1.582104CrossRefGoogle Scholar
5 Stryahilev, Denis, Sazonov, Andrei and Nathan, Arokia, J. Vac. Sci. Technol. A 20(3), 1087, (2002).10.1116/1.1472423CrossRefGoogle Scholar
6 Sazonov, Andrei, Nathan, Arokia and Striakhilev, Denis, J. Non-Cryst. Sol. 266-269, 13291334, (2000).10.1016/S0022-3093(99)00946-1CrossRefGoogle Scholar
7 Lanford, W. A. and Rend, M. J., J. Appl. Phys. 49 (4), 2473, (1978).10.1063/1.325095CrossRefGoogle Scholar
8 Lee, J.W., Machenzie, K.D., Johnson, D., Sasserath, J.N., Perton, S.J. and Ren, F., J. electochemcal Soc. 147, 1481, (2000).10.1149/1.1393382CrossRefGoogle Scholar
9 Lee, S.H., Lee, I. and Yi, J., Surface and Coating Technology 153, 6771, (2002).10.1016/S0257-8972(01)01554-7CrossRefGoogle Scholar
10 Jonak-Auer, I., Meisels, R. and Kuchar, F., Infrared Physics & Technology 38, 223226, (1997).10.1016/S1350-4495(97)00011-XCrossRefGoogle Scholar
11 Chow, Ray, Lanford, W. A., Ke-Ming, Wang and Roaler, Richard S., J. appl. Phys. 53 (8), 5630, (1982).10.1063/1.331445CrossRefGoogle Scholar
12 Flewitt, A. J., Dyson, A. P., Robertson, J. and Milne, W. I., Thin Solid Films 383, 172177, (2001).10.1016/S0040-6090(00)01628-XCrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *