Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-s8qdg Total loading time: 0.34 Render date: 2021-09-28T15:17:40.035Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Leakage Current Behavior in CaZrO3 Thin Films for High-k Applications

Published online by Cambridge University Press:  28 July 2011

Ting Yu
Affiliation:
Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
Weiguang Zhu
Affiliation:
Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
Xiaofeng Chen
Affiliation:
Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
Yuekang Lu
Affiliation:
Microelectronics Center, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
Get access

Abstract

Electrical properties and leakage current mechanisms of perovskite CaZrO3 dielectric thin films have been studied in this paper. CaZrO3 thin films were deposited on Pt/SiO2/n-Si substrate by the sol-gel wet chemical technology, and then annealed at temperatures ranging from 550 to 700 °C for 1h in O2. The films with platinum (Pt) top and bottom electrodes were characterized with respect to the leakage current as a function of temperature and applied voltage. The CaZrO3 film annealed at 600 °C was amorphous and showed good electrical properties with a dielectric constant of about 15 and leakage current density of 10−8 A/cm2 at high applied electrical field of 2.5 MV/cm. The data can be interpreted via a Schottky barrier model. The conduction mechanism at low electric fields is due to Ohmic conduction. On the other hand Schottky mechanism dominates at the intermediate fields. The high dielectric constant, low leakage current density and high breakdown strength suggest that the CaZrO3 thin film is a promising candidate for high-k applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lo, S.-H., Buchanan, D. A., Taur, Y., and Wang, W., IEEE Electron Device Lett. 18, 209 (1997).CrossRefGoogle Scholar
2. Klein, T. M., Niu, D., Epling, W. S., Li, W., Maher, D. M., Hobbs, C. C., Hegde, R. I., R, I. J.. Baumvol, and Parsons, G. N., Appl. Phys. Lett. 75, 4001 (1999).CrossRefGoogle Scholar
3. Wilk, G. D. and Wallace, R. M., Appl. Phys. Lett. 76, 112 (2000).CrossRefGoogle Scholar
4. Lee, B. H., Kang, L., Nieh, R., Qi, W.-J., and Lee, J. C., Appl. Phys. Lett. 76, 1926 (2000).CrossRefGoogle Scholar
5. Droopad, R., Yu, Z., Ramdani, J., Hilt, L., Curless, J., Overgaard, C., Edwards, J. L. Jr, Finder, J., Eisenbeiser, K., and Ooms, W., Mater. Sci and Eng. B. 87, 292 (2001).CrossRefGoogle Scholar
6. Davies, R. A., Islam, M. S. and Gale, J. D., Solid State Ionics. 126, 323 (1999).CrossRefGoogle Scholar
7. Yamaguchi, Shu, Kobayashi, Kiyoshi, Higuchi, Toru, Shin, Shik and Iguchi, Yoshiaki, Solid State Ionics. 136137, 305 (2000).CrossRefGoogle Scholar
8. Zhu, W., Tan, O. K., and Yao, X., J. Appl. Phys. 84, 5134 (1998).CrossRefGoogle Scholar
9. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Leakage Current Behavior in CaZrO3 Thin Films for High-k Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Leakage Current Behavior in CaZrO3 Thin Films for High-k Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Leakage Current Behavior in CaZrO3 Thin Films for High-k Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *