Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-l2zqg Total loading time: 0.162 Render date: 2021-09-18T08:47:35.442Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case

Published online by Cambridge University Press:  21 March 2011

C. Ferrari
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
E. Villaggi
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
N. Armani
Affiliation:
CNR Maspec Institute, Parco Area delle Scienze 37/A, 43010 Fontanini, Parma, Italy
G. Carta
Affiliation:
CNR Ictima Institute, Area della Ricerca di Padova, Corso Stati Uniti 4, 35127 Padova, Italy
G. Rossetto
Affiliation:
CNR Ictima Institute, Area della Ricerca di Padova, Corso Stati Uniti 4, 35127 Padova, Italy
Get access

Abstract

Following recent works that report a non linear dependence of the lattice parameter versus composition in some semiconductor alloys the InGaAs/InP system has been investigated. The lattice parameter and the composition of InGaAs/InP lattice matched heterostructures have been independently determined by measuring the high resolution X-ray diffraction profile and the absorption of the X-ray beam diffracted from the InP substrate. In contrast with previous results that stated a linear dependence of the lattice parameter with composition, a 6% larger In content in the InGaAs/InP lattice matched alloy is found. Such result has been confirmed by the analysis of the X-ray fluorescence induced by an electron beam on the layer and on standards made of InAs and GaAs fine ground crystals. The result is in good agreement with the predictions of models based on the elasticity theory applied on a microscopic scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pines, B.J., J. Phis. (U.S.S.R.) 3, 309 (1940)Google Scholar
2. Friedel, J., Phil. Mag. 46, 514 (1955)CrossRefGoogle Scholar
3. Fournet, J., J. Phys. Radium 14, 374 (1953)CrossRefGoogle Scholar
4. Dismukes, J. P., Ekstrom, L., and Paff, R. J., J. of Phys. Chem., 68, 3021 (1964)CrossRefGoogle Scholar
5. Bocchi, C., Franchi, S., Germini, F., Baraldi, A., Magnanini, R., Salvador, D. De, Berti, M., Drigo, A.V., J. Appl. Phys. 86, 1298 (1999)CrossRefGoogle Scholar
6. Gehrsitz, S., Sigg, H., Herres, N., Bachem, K., Köhler, K., Reinhart, F.K., Phys. Rev. B 60, 11601 (1999)CrossRefGoogle Scholar
7. Wasilewski, Z. R., Dion, M. M., Lockwood, D. J., Poole, P., Streater, R. W., SpringThorpe, A. J., J. Appl. Phys. 81, 1683 (1997)CrossRefGoogle Scholar
8. Berti, M., D. De Salvador, Drigo, A.V., Romanato, F., Stangl, J., Zerlauth, S., Schäffler, F., Bauer, G., Appl. Phys. Lett., 72, 1602 (1998)CrossRefGoogle Scholar
9. Nakajima, K., Tanahashi, T., Akita, K., Yamaoka, T., J. Appl. Phys. 50, 4975 (1979)CrossRefGoogle Scholar
10. Cole, J.M., Earwaker, L.G., Cullis, A. G., Chew, N. G., Bass, S. J., J. Appl. Phys. 60, 2639 (1986)CrossRefGoogle Scholar
11. Hockings, E.F., Kudman, I., Seidel, T. E., Shmelz, C. M., Steigmeier, E., J. of Appl. Phys., 37, 2879 (1966)CrossRefGoogle Scholar
12. Stano, A., J. of the Electroch. Soc., Vol. 134, n° 2 (1987)CrossRefGoogle Scholar
13. Chipman, D. R., Batterman, B. W., J. Appl. Phys. 34, 912 (1963)CrossRefGoogle Scholar
14. Brennan, S. and Cowan, P. L., Rev. Sci. Instrum. 63, 850 (1992)CrossRefGoogle Scholar
15. Henke, B.L., Gullikson, E.M. and Davis, J.C., X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables, 54, no.2:181-342 (July 1993)CrossRefGoogle Scholar
16. Chantler, C. T. J. Phys. Chem. Ref. Data 24, 71 (1995)CrossRefGoogle Scholar
17. Seltzer, S.M., Hubbell, J.H., “45 Years (1950-1995) with X-ray Interactions and Applications” presented at 51th National Meeting of the Japanese Society of Radiological Technology, April 14-16, Nagoya, Japan (1995)Google Scholar
18. Kissel, L., Zhou, B., Roy, S. C., Gupta, S. K. Sen and Pratt, R. H., Acta Cryst. A 51, 271 (1995)CrossRefGoogle Scholar
19. Cromer, D. T., and Liberman, D., J. Chem. Phys. 53, 1891 (1970)CrossRefGoogle Scholar
20. Bilderback, D.H., Colella, R., Phys. Rev. B 13, 6 (1976)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *