Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-9lvz7 Total loading time: 0.189 Render date: 2021-09-23T21:13:47.908Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Lateral/vertical Homoepitaxial Growth on 4H-SiC Surfaces Controlled by Dislocations

Published online by Cambridge University Press:  01 February 2011

Yoosuf N. Picard
Affiliation:
yoosuf.picard@nrl.navy.mil, Naval Research Lab, Electronics Science and Technology, Code 6812, 4555 Overlook Ave. SW, Washington, DC, 20375, United States
Andrew J. Trunek
Affiliation:
andrew.j.trunek@nasa.gov, Ohio Aerospace Institute, 21000 Brookpark Rd., Cleveland, OH, 44135, United States
Philip G. Neudeck
Affiliation:
neudeck@nasa.gov, NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH, 44135, United States
Mark E. Twigg
Affiliation:
mark.twigg@nrl.navy.mil, Naval Research Lab, Electronics Science and Technology, Code 6812, 4555 Overlook Ave. SW, Washington, DC, 20375, United States
Get access

Abstract

This paper reports the influence of screw dislocations on the lateral/vertical growth behavior of chemical vapor deposited (CVD) on-axis homoepitaxial 4H-SiC films grown on patterned mesas. Electron channeling contrast imaging (ECCI) was utilized to image both atomic steps and dislocations while the film structure/orientation was determined using electron backscatter diffraction (EBSD). The presence and position of screw dislocations within the mesa impacted the resultant film thickness, lateral shape, and atomic step morphology. Mesa side walls that incline inwards due to faceting during screw-dislocation driven vertical film growth can intersect with the dislocation step sources near the side walls. If this occurs for all screw dislocations on a mesa, we observe a transition towards laterally dominated growth that produces webbed structures and films surfaces exhibiting significantly lower step densities. Transition from vertical to lateral dominated growth is consistent with ECCI imaged dislocation very near a mesa side wall.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Powell, J.A., Neudeck, P.G., Trunek, A.J., Beheim, G.M., Matus, L.G., Hoffman, R.W. Jr., Keys, L.J., Appl. Phys. Lett. 77, 1449 (2000).CrossRefGoogle Scholar
2. Picard, Y.N., Twigg, M.E., Caldwell, J.D., Eddy, C.R. Jr., Neudeck, P.G., Trunek, A.J., and Powell, J.A., J. Elec. Mater., in press (2008).Google Scholar
3. Picard, Y.N., Twigg, M.E., Caldwell, J.D., Eddy, C.R. Jr., Neudeck, P.G., Trunek, A.J., and Powell, J.A., Appl. Phys. Lett. 90, 234101 (2007).CrossRefGoogle Scholar
4. Neudeck, P.G., Powell, J.A., Beheim, G.M., Benavage, E.L., Abel, P.B., Trunek, A.J., Spry, D.J., Dudley, M., and Vetter, W.M., J. Appl. Phys. 92, 2391 (2002).CrossRefGoogle Scholar
5. Neudeck, P.G., Du, H., Skowronski, M., Spry, D.J., and Trunek, A.J., J. Phys. D.40, 6139 (2007).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lateral/vertical Homoepitaxial Growth on 4H-SiC Surfaces Controlled by Dislocations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lateral/vertical Homoepitaxial Growth on 4H-SiC Surfaces Controlled by Dislocations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lateral/vertical Homoepitaxial Growth on 4H-SiC Surfaces Controlled by Dislocations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *