Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.391 Render date: 2021-08-04T00:17:57.929Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Large Optical Transitions in Rewritable Digital Versatile Discs: An Interlayer Atomic Zipper in a SbTe Alloy

Published online by Cambridge University Press:  01 February 2011

Junji Tominaga
Affiliation:
j-tominaga@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan, 81298612924, 81298512902
Paul Fons
Affiliation:
paul-fons@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Takayuki Shima
Affiliation:
t-shima@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Masashi Kuwahara
Affiliation:
kuwaco-kuwahara@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Osamu Suzuki
Affiliation:
suzuki.osamu@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Alexander Kolobov
Affiliation:
a.kolobov@aist.go.jp, National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan
Get access

Abstract

Chalcogenides, in particular germanium-antimony-tellurium (GeSbTe) and antimony-rich tellurium (R-SbTe) based alloys, are the most technologically significant alloys currently being applied to recordable optical storage as typified by rewritable digital versatile discs (DVD-RW), DVD random access memory, (DVD-RAM). The same alloys are also being applied to nonvolatile random access memory electrical memory in the form of phase change random access memory (PCRAM). In 2004, the phase transition mechanism of GeSbTe was first revealed, demonstrating that the amorphous state is not a random configurational network but is locally well-ordered with the crystalline to amorphous switching process being based upon Ge atoms moving between octahedral and tetrahedral symmetry positions. The kinetic barrier between these two states gives rise to the non-volatile nature of GeSbTe as a storage medium. In contrast, no theoretical analysis has been proposed for SbTe alloys because a Ge-free system. In this paper, the Sb2Te structure has been investigated using the local density approximation (LDA) using a plane-wave basis and compared with experimental results. The effect of external stress on the structure was also investigated. It was found that Sb2Te undergoes two phase-transitions at around 18 GPa (compressive) and −3 GPa (tensile). In the case of negative stress, the c-axis was found to expanded more than the other axes, giving rise a large refractive index change. We report on coherent (uniaxial) melting induced by the breaking a sigma bond between Sb2Te3 and Sb superlattices. We believe this to be the origin of the phase transition that induces a large change in physical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwasaki, H. Ide, Y. Harigaya, M. Kageyama, Y. and Fujimura, I. Jpn. J. Appl. Phys. 31, 461465 (1992).Google Scholar
2. Yamada, N. Ohno, E. Nishiuchi, K. Akahira, N. and Takao, M. J. Appl. Phys. 69, 28492856 (1991).Google Scholar
3. Ovshinsky, S. R. Phys. Rev. Lett. 21, 14501453 (1968).Google Scholar
4. Yamada, N. and Matsunaga, T. J. Appl. Phys. 88, 70207208 (2000).Google Scholar
5. Kolobov, A. et al. Nature Materials, 3, 703708 (2004).Google Scholar
6. Welnic, W. et al. Nature Materials, 5, 5662 (2004).Google Scholar
7. Agafonov, V. Rodier, N. Ceokin, R. Bellissent, R. Bergman, C. and Gaspard, J. Acta Cryst. C47, 11411143 (1991).Google Scholar
8. Tominaga, J. Shima, T. Kuwahara, M. Fukaya, T. Kolobov, A. and Nakano, T. Nanotechnology 15, 411415 (2004).Google Scholar
9.paper preparing.Google Scholar
10. Schwarz, U. Akselrud, L. Rosner, H. Ormeci, A. and Grin, Y. Phys. Rev. B 67, 214101- (1-7), (2003).CrossRefGoogle Scholar
11. Matsunaga, T. Umetani, Y. and Yamada, N. Phys. Rev. B 64, 184116 (1-7) (2001).Google Scholar
12. Tinte, S. Rabe, K. M. and Vanderbit, D. Phys. Rev. B. 68, 144105 (1-9) (2003).CrossRefGoogle Scholar
13. Penderson, T. Njorogo, J. Wamwangi, D. and Wuttig, M. Appl. Phys. Lett. 79, 35973599 (2001).CrossRefGoogle Scholar
14. Ibach, H. and Luth, H. Solid-State Physics, Springer, Berlin Heidelberg, 1996.CrossRefGoogle Scholar
15. Bostanjogol, O. and Scholtzhauer, G. Phys. Stat. Sol.(a) 68, 555560 (1981).CrossRefGoogle Scholar
16. Kooi, B. Groot, W. and Hossen, J. J. Appl. Phys. 95, 924932 (2004).CrossRefGoogle Scholar
17. Matsunaga, T. and Yamada, N. Jpn. J. Appl. Phys. 7B, 47044712 (2004).CrossRefGoogle Scholar
18. Martin, R. M. Electronic Structure, Cambridge Univ. Press, UK, 2004.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Large Optical Transitions in Rewritable Digital Versatile Discs: An Interlayer Atomic Zipper in a SbTe Alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Large Optical Transitions in Rewritable Digital Versatile Discs: An Interlayer Atomic Zipper in a SbTe Alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Large Optical Transitions in Rewritable Digital Versatile Discs: An Interlayer Atomic Zipper in a SbTe Alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *