Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qp9dn Total loading time: 0.231 Render date: 2021-06-19T23:20:35.181Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

L10 Ordered Intermetallics for Ultrahigh Density Magnetic Recording Media: Phase Formation and the Role of Alloy Chemistry and Composition

Published online by Cambridge University Press:  26 February 2011

David C. Berry
Affiliation:
dcberry@andrew.cmu.edu Carnegie Mellon University Dept. of Materials Science and Engineering Pittsburgh PA 15213 United States
Katayun Barmak
Affiliation:
katayun@andrew.cmu.edu, Carnegie Mellon University, Dept. of Materials Science and Engineering, Pittsburgh, PA, 15213, United States
Corresponding
Get access

Abstract

In this paper we provide a summary review of our research regarding the effect of composition on the A1 to L10 transformation in binary FePt with compositions in the range of 39.3 to 55.3 at.% Pt and ternary FeCuPt alloys with Cu additions in the range of 1.0 to 19.4 at.%. These binary and ternary alloy films have been studied using non-isothermal differential scanning calorimetry (DSC) combined with the calculation of TTT diagrams generated via experimentally validated Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Composition is found to play a significant role in the transformation kinetics in both FePt and FeCuPt. However, when comparing equivalent FePt and FeCuPt alloys, the addition of Cu has no significant effect. TTT diagrams show that as little as a 90 °C increase in peak temperature from the DSC measurements can result in a >300× increase in the time required for full transformation using isothermal anneals. Our results on the effect of Cu additions are compared with those reported in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Murdock, E. S., Simmons, R. F., and Davidson, R., IEEE Trans. Mag. 28, 3078 (1992).10.1109/20.179719CrossRefGoogle Scholar
2. Toney, M. F., Lee, W. Y., Hedstrom, J. A., and Kellock, A., J. Appl. Phys. 93, 9902 (2003).10.1063/1.1577226CrossRefGoogle Scholar
3. Aboaf, J. A., McGuire, T. R., Herd, S. R., and Klokholm, E., IEEE Trans. Mag. 20, 1642 (1984).CrossRefGoogle Scholar
4. Coffey, K. R., Parker, M. A., and Howard, K. J., IEEE Trans. Mag. 31, 2737 (1995).CrossRefGoogle Scholar
5. Wierman, K. W., Platt, C. L., Howard, J. K., and Spada, F. E., J. Appl. Phys. 93, 7160 (2003).10.1063/1.1555893CrossRefGoogle Scholar
6. Maeda, T., Kai, T., Kikitsu, A., Nagase, T., and Akiyama, J.-I., Appl. Phys. Lett, 80, 2147 (2002).10.1063/1.1463213CrossRefGoogle Scholar
7. Takahashi, Y. K., Ohnuma, M., and Hono, K. J., J. Magn. Magn. Mat. 246, 259 (2002).10.1016/S0304-8853(02)00065-3CrossRefGoogle Scholar
8. Platt, C. L., Wierman, K. W., Svedberg, E. B., van de Veerdonk, R., Howard, J. K., Roy, A. G., and Laughlin, D. E., J. Appl. Phys. 92, 6104 (2002).10.1063/1.1516870CrossRefGoogle Scholar
9. Barmak, K., Kim, J., Berry, D. C., Hanani, W. N., Wierman, K., Svedberg, E. B., and Howard, J. K., J. Appl. Phys. 97, 024902–1 (2005).CrossRefGoogle Scholar
10. Berry, D. C., Kim, J., Barmak, K., Wierman, K., Svedberg, E. B., and Howard, J. K., Scripta Mater. 53, 423 (2005).10.1016/j.scriptamat.2005.04.026CrossRefGoogle Scholar
11. Johnson, W. A. and Mehl, R. F., Trans. Am. Crystallogr. Assoc. 135, 416 (1939).Google Scholar
12. Avrami, M., J. Phys. Chem. 7, 1103 (1939).10.1063/1.1750380CrossRefGoogle Scholar
13. Avrami, M., J. Phys. Chem. 8, 212 (1940).10.1063/1.1750631CrossRefGoogle Scholar
14. Avrami, M., J. Phys. Chem. 9, 177 (1941).10.1063/1.1750872CrossRefGoogle Scholar
15. Kolmogorov, A. N., Izv. Akad. Nauk SSR Ser. Fiz. Mat. Nauk 3, 355 (1937) (in Russian).Google Scholar
16. Jeong, S., McHenry, M. E., and Laughlin, D. E., IEEE Trans. Mag. 37, 1309 (2001).10.1109/20.950826CrossRefGoogle Scholar
17. Berry, D. C. and Barmak, K., ” J. Appl. Phys. [in press].Google Scholar
18. Michaelsen, C., Barmak, K. and Weihs, T. P., J. Phys. D, 30, 3167 (1997).10.1088/0022-3727/30/23/001CrossRefGoogle Scholar
19. Kissinger, H. E., US Bur Standards- J. Research 57, 217 (1956).10.6028/jres.057.026CrossRefGoogle Scholar
20. Michaelsen, C. and Dahms, M., Thermochimica Acta 288, 9 (1996).10.1016/S0040-6031(96)03039-0CrossRefGoogle Scholar
21. Binary Allloy Phase Diagrams, 2nd ed., edited by Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L.. (ASM International, Materials Park, OH, 1990).Google Scholar
22. Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, New York, 1975), p. 8, 479.Google Scholar
23. Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, New York, 1992), p. 11, 143, 157, 265–267.10.1007/978-1-4899-3051-4CrossRefGoogle Scholar
24. Zeldovich, J. B., Acta Physicochimica U.R.S.S. 18, 1 (1943).Google Scholar
25. Barmak, K., Kim, J., Shell, S., Svedberg, E. B., and Howard, J. K., Appl. Phys. Lett. 80, 4268 (2002).10.1063/1.1483924CrossRefGoogle Scholar
26. Shahmiri, M., Murphy, S., and Vaughan, D. J., Mineral. Mag. 49, 547 (1985).10.1180/minmag.1985.049.353.08CrossRefGoogle Scholar
27. Kushida, A., Tanaka, K., Nakamura, H., Mater. Trans. 44, 59 (2003).10.2320/matertrans.44.59CrossRefGoogle Scholar
28. Nosé, Y., Ikeda, T., Nakajima, H., Tanaka, K. and Nakamura, H., Mat. Res. Soc. Symp. Proc. 753, 381 (2003).Google Scholar
29. Kučera, J. and Million, B., Phys. Stat. Sol. A 31, 275 (1975).10.1002/pssa.2210310131CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

L10 Ordered Intermetallics for Ultrahigh Density Magnetic Recording Media: Phase Formation and the Role of Alloy Chemistry and Composition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

L10 Ordered Intermetallics for Ultrahigh Density Magnetic Recording Media: Phase Formation and the Role of Alloy Chemistry and Composition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

L10 Ordered Intermetallics for Ultrahigh Density Magnetic Recording Media: Phase Formation and the Role of Alloy Chemistry and Composition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *