Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T09:23:10.525Z Has data issue: false hasContentIssue false

Ir/Au Ohmic Contacts on Bulk, Single-Crystal n-Type ZnO

Published online by Cambridge University Press:  15 March 2011

J.S. Wright
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
R. Khanna
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
L. Stafford
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
B.P. Gila
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
D.P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
S.J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
F. Ren
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611
I.I. Kravchenko
Affiliation:
Department of Physics, University of Florida, Gainesville, Florida 32611
Get access

Extract

Purpose: Need for reliable, thermally stable Ohmic metallizations for ZnO. Because of difficulties with current common contact metals, there exists a heavy desire for metals with high melting temperatures and low reactivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

1. Jang, H.W. and Lee, J.-L., J. Appl. Phys. 93, 5416 (2003).10.1063/1.1565494Google Scholar
2. Kang, B.S., Kim, S., Roche, J.R. La, Ren, F., J. Vac. Sci. Technol. B 22, 2635 (2004).10.1116/1.1814111Google Scholar
3. Look, D. C., Mater. Sci. and Eng. B 80, 383 (2001).10.1016/S0921-5107(00)00604-8Google Scholar
4. Claflin, B., Look, D.C., Park, S.J. and Cantwell, G., J. Crystal Growth, 287, 16 (2006).10.1016/j.jcrysgro.2005.10.035Google Scholar
5. Limpijumnong, S., Zhang, S.B., Wei, S.-H. and Park, C.H., Phys. Rev. Lett. 92 155504 (2004).10.1103/PhysRevLett.92.155504Google Scholar
6. Pearton, S. J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., Prog. in Mater. Sci. 50, 293 (2005).10.1016/j.pmatsci.2004.04.001Google Scholar
7. Yi, G-C., Wang, C., and Park, W. I., Semicond. Sci. Technol. 20, S22 (2005).10.1088/0268-1242/20/4/003Google Scholar
8. Padovani, F.A. and Stratton, R., Solid-State Electron. 9 695 (1966).10.1016/0038-1101(66)90097-9Google Scholar
9. Makino, T., Segawa, Y., Kawasaki, M. and Koinuma, H., Semicond.Sci.Technol. 20 S78 (2005).10.1088/0268-1242/20/4/010Google Scholar
10. Alivov, Ya.I., Kalinina, E.V., Cherenkov, A.E., Look, D.C., Ataev, B.M., Omaev, A.K., Chukichev, M.V., and Bagnall, D.M., Appl. Phys. Lett. 83, 4719 (2003).10.1063/1.1632537Google Scholar
11. Osinsky, A., Dong, J.W., Kauser, M.Z., Hertog, B., Dabiran, A.M., Chow, P.P., Pearton, S.J., Lopatiuk, O., and Chernyak, L., Appl. Phys. Lett. 85, 4272 (2004).10.1063/1.1815377Google Scholar