Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-5wlnc Total loading time: 0.189 Render date: 2021-08-04T00:07:48.629Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Ionizing Radiation Total Dose Detectors Using Oligomer Organic Semiconductor Material and Devices

Published online by Cambridge University Press:  17 June 2011

Harshil N. Raval
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai – 400 076, India
V. Ramgopal Rao
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai – 400 076, India
Get access

Abstract

Organic semiconducting oligomer – Pentacene, as a material and organic electronic devices based on it, are proposed here as total dose detectors for ionizing radiation. Pentacene, when exposed to ionizing radiation of γ – rays using Cobalt – 60 (60Co) radiation source, shows increase in the conductivity of the material which can be used as a sensing phenomenon for determining the dose of ionizing radiation. The change in material property was also verified using UV-visible (UV-VIS) spectrum for pentacene thin-films with rising absorption peaks at the oxidized positions in the wavelength. A pentacene resistor can be used as a detector, as the change in the conductivity of the pentacene film can be easily quantified by measuring the change in resistance of the pentacene resistor after different total radiation dose exposures. The experiments resulted in a sensitivity of 340 kΩ/Gy for a total 100 Gy radiation dose for the pentacene resistor. Furthermore, employing this simple electrical measurement technique for determining the dose of ionizing radiation and to improve the sensitivity of the sensor by transistor action, a pentacene based organic field effect transistor (OFET) was exposed to ionizing radiation. Change in OFF current (IOFF) of the OFET sensor with W/L = 19350 μm/100 μm, suggests a sensitivity of 21 nA/Gy for 100 Gy dose. Also, changes in various other parameters like threshold voltage, subthreshold swing, field effect mobility, number of interface states etc. can be extracted from the electrical characterizations which prove their usefulness as a detector for ionizing radiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mater. 14 (2), 99 (2002)3.0.CO;2-9>CrossRefGoogle Scholar
2. Tsukagoshi, Kazuhito, Tanabe, Jun, yagi, Iwao, Shigeto, Kunji, Yanagisawa, Keiichi, aoyagi, Yoshinobu, J. Appl. Phys. 99, 064506 (2006)CrossRefGoogle Scholar
3. Raval, H. N., Tiwari, S. P., Navan, R. R., Mhaisalkar, Subodh G., Rao, V. R., IEEE Elect. Dev. Lett. 30 (5), 484486 (2009)CrossRefGoogle Scholar
4. Guillaud, G., Simon, J., Germain, J. P., Coord. Chem. Rev. 178 (2), 1433 (1998)CrossRefGoogle Scholar
5. Dudhe, R. S., Sinha, J., Kumar, A., Rao, V. R., Sens. and Actu. B: Chem. 148 (1), 158 (2010)CrossRefGoogle Scholar
6. Agostinelli, T., Campoy-Quiles, M., Blakesley, J. C., Speller, R., Bradley, D. D. C., nelson, J., Appl. Phys. Lett. 93 (20), 0203305 (2008)CrossRefGoogle Scholar
7. Kingsley, J. W., Weston, S. J., Lidzey, D. G., Ieee Journal of selected topics in quantum electronics, PP (99), 1-6 (2010)Google Scholar
8. Silva, E. A. B., Borin, J. F., Nicolucci, P., Graeff, C. F. O., Netto, T. G., Bianchi, R. F., Appl. Phys. Lett. 86 (13), 131902 (2005)CrossRefGoogle Scholar
9. Raval, H. N., Tiwari, S. P., Navan, R. R., Rao, V. R., Appl. Phys. Lett. 94 (12), 123304 (2009)CrossRefGoogle Scholar
10. Lobez, J. M., and Swager, T. M., Chem. Int. Ed. 49 (1), 9598 (2010)CrossRefGoogle Scholar
11. Raval, H. N. and Rao, V. R., IEEE Elect. Dev. Lett. 31 (12), 14821484 (2010)CrossRefGoogle Scholar
12. Baude, P. F., Ender, D. A., Haos, M. A., Kelley, T. W., Muyres, D. V., Theiss, S. D., Appl. Phys. Lett. 82 (22), 39643966 (2003)CrossRefGoogle Scholar
13. Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Dehm, C., Appl. Phys. Lett. 84 (14), 26732675 (2004)CrossRefGoogle Scholar
14. Crone, B., Dodabalapur, A., Gelperin, A., Torsi, L., Katz, H. E., Lovinger, A. J., Bao, Z., Appl. Phys. Lett. 78 (15), 22292231 (2001)CrossRefGoogle Scholar
15. Zhu, T., Mason, J. T., Dieckermann, R., Malliaras, G. G., Appl. Phys. Lett. 81 (24), 4643 (2002)CrossRefGoogle Scholar
16. Bartic, C., Palan, B., Campitelli, A., Borghs, G., Sens. and Actu. B: Chemical, 83, 115 (2002)CrossRefGoogle Scholar
17. Kagan, C. R., Afzali, A., Graham, T. O., Appl. Phys. Lett. 86, 193504 (2005)CrossRefGoogle Scholar
18. Lee, Ho Nyeon, Lee, Young Gu, Ko, Ik Hwan, Hwang, Eok Chai, Kang, Sung Kee, Current Applied Physics 8, 626630 (2008)CrossRefGoogle Scholar
19. Tiwari, S. P., Srinivas, P., Shriram, S., Kale, N. S., Mnaisalkar, S. G., and Rao, V. R., Thin Solid Films, 516 (5), 770772 (2008)CrossRefGoogle Scholar
20. Minakata, Takashi, Nagoya, Ichiro, Ozaka, Masaru, J. Appl. Phys. 69 (10), 73547356 (1991)CrossRefGoogle Scholar
21. Tao, Chun-Lan, Zhang, Xu-Hui, Zhang, Fu-Jia, Liu, Yi-Yang, Zhang, Hao-Li, Materials Science and Engineering B 140, 14 (2007)CrossRefGoogle Scholar
22. van Langevelde, R., Klaassen, F. M., IEEE Tran. On Elect. Dev. 44 (11), 20442052 (1997)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ionizing Radiation Total Dose Detectors Using Oligomer Organic Semiconductor Material and Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ionizing Radiation Total Dose Detectors Using Oligomer Organic Semiconductor Material and Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ionizing Radiation Total Dose Detectors Using Oligomer Organic Semiconductor Material and Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *