Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.293 Render date: 2021-11-29T11:49:28.422Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Ion Implantation and Annealing Effects in Silicon Carbide

Published online by Cambridge University Press:  03 September 2012

V. Heera
Affiliation:
Research Center Rossendorf Inc., D-01314 Dresden, POB 510119, Germany, heera@fz-rossendorf. De
W. Skorupa
Affiliation:
Research Center Rossendorf Inc., D-01314 Dresden, POB 510119, Germany, heera@fz-rossendorf. De
Get access

Abstract

SiC is a promising semiconductor material for high-power/high-frequency and hightemperature electronic applications. For selective doping of SiC ion implantation is the only possible process. However, relatively little is known about ion implantation and annealing effects in SiC. Compared to ion implantation into Si there is a number of specific features which have to be considered for successful ion beam processing of SiC. A brief review is given on some aspects of ion implantation in and annealing of SiC. The ion implantation effects in SiC are discussed in direct comparison to Si. The following issues are addressed: ion ranges, radiation damage, amorphization, high temperature implantation, ion beim induced crystallization and surface erosion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, G.L., Properties of Silicon Carbide, (INSPEC, London, 1995)Google Scholar
2. Shenai, K., Scott, R.S. and Baliga, B.J., IEEE Trans.Elec.Dev. 36, 1811 (1989)CrossRefGoogle Scholar
3. Ruff, M., Mitlelmer, H. and Helbig, R., IEEE Trans.Eiec.Dev. 41, 1040 (1994)CrossRefGoogle Scholar
4. Pensl, G. and Troffer, Tb., Solid State Phenomena 47–48, 115 (1996)Google Scholar
5. Casady, J.B. and Johnson, R.W., Solid-State Electronics 39, 1409 (1996)CrossRefGoogle Scholar
6. O'Connor, J.R., Smiltens, J., Silicon Carbide, A High-Temperature Semiconductor, (Pergamon, NY,1960)Google Scholar
7. Davies, R.F., Kelner, G., Shur, M., Palmour, J.W. and Edmond, J.A., Proc. IEEE 79, 677 (1991)Google Scholar
8. Powell, J.A., Neudeck, P.G., Matus, L.G. and Petit, J.B., Mat.Res.Soc.Symp.Proc. 242, 495 (1992)Google Scholar
9. Neudeck, P.G., J.Electr.Mater. 24, 283 (1995)CrossRefGoogle Scholar
10. Wesch, W., Nucl.Instr.Meth. B 116, 305 (1996)CrossRefGoogle Scholar
11. McHargue, C.J. and Williams, J.M., Nucl.Instr.Meth B80/81, 889 (1993)CrossRefGoogle Scholar
12. Skorupa, W., Heera, V., Pacaud, Y. and Weishart, H., Nucl.Instr.Meth. B 120, 114 (1996)CrossRefGoogle Scholar
13. Verma, A. and Krishna, P., Polymorphism and Polypnism in Crystals, (Wiley, New York, 1966)Google Scholar
14. Pirouz, P. and Yang, J.W., Ultramicroscopy 51, 189 (1993)CrossRefGoogle Scholar
15. Yoo, W.S. and Matsunami, H., Jpn.J.Appl.Phys. 30, 545 (1991)CrossRefGoogle Scholar
16. Pezoldt, J., Kalnin, A., Moskwina, D.R., Savelyev, W.D., Nucl.Instr.Meth. B80/81, 943 (1993)1CrossRefGoogle Scholar
17. Pensl, G. and Choyke, W.J., Physica B 185, 264 (1993)CrossRefGoogle Scholar
18. Chang, K.J. and Cohen, M.L., Phys.Rev. B 35, 8196 (1987)CrossRefGoogle Scholar
19. Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, N.Y., 1985)Google Scholar
20. Fōhl, A., Emrick, R.M. and Carstanjen, H.D., Nucl.Instr.Meth. B 65, 335 (1992)CrossRefGoogle Scholar
21. Rao, M.V., Griffiths, P., Holland, O.W., Kelner, G., and Freitas, J.A., Simons, D.S., Chi, P.H., Ghezzo, M., J.Appl.Phys. 77, 2479 (1995)CrossRefGoogle Scholar
22. Toda, T., Yagi, K., Koga, K., Yoshida, K. and Niina, T., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.) Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) p. 545 Google Scholar
23. Ahmed, S., Barbero, C.J. and Sigmon, T.W., J.Appl.Phys. 77, 6194 (1995)CrossRefGoogle Scholar
24. Gardner, J., Rao, M.V., Holland, O.W., Kelner, G., Simons, D.S., Chi, P.H., Andrews, J.M., Kretchmer, J. and Ghezzo, M., J.Elec.Mater. 25, 885 (1996)CrossRefGoogle Scholar
25. Lindhard, J., Danske, Kgl. Selskab., Videnskab., Mat.-Fys. Medd 34, No. 14 (1965)Google Scholar
26. Yaguchi, S., Kimoto, T., Ohyama, N. and Matsunami, H., Jpn.J.Appl.Phys. 34, 3036 (1995)CrossRefGoogle Scholar
27. Behar, M., Fichtner, P.F.P., Grande, P.L., Zawislak, F.C., Mater.Sci.Eng. R15, 1 (1995)CrossRefGoogle Scholar
28. Lossy, R., Reichert, W., Obermeier, E. and Stoemenos, J., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) 553 Google Scholar
29. Nakata, T., Mizutani, Y., Mikoda, M., Watanabe, M., Takagi, T., Nishino, S., Nucl.Instr.Meth.B 74, 131 (1993)CrossRefGoogle Scholar
30. Addamiano, A., Anderson, G.W., Comas, J., Hughes, H.L., Lucke, W., J.Elecrochem.Soc. 119, 1355 (1972)CrossRefGoogle Scholar
31. Lucke, W., Comas, J., Hubler, G. and Dunning, K., J.Appl.Phys. 46, 994 (1975)CrossRefGoogle Scholar
32. Heera, V., Pezoldt, J., Ning, X.J. and Pirouz, P., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRMM 1995, IOPC series 142, (IOP Publishing 1996) p. 509 Google Scholar
33. Suvorov, A.V., 1.0. Usov, Sokolov, V.V. and Suvorova, A.A., Mat.Res.Soc.Proc. 396, 239 (1996)CrossRefGoogle Scholar
34. Edmond, J.A., Withrow, S.P., Kong, H.S., and Davies, R.F., Mater.Res.Soc.Symp.Proc. 51, 395 (1986)CrossRefGoogle Scholar
35. Chechenin, N.G., Bourdelle, K.K., Suvorov, A.V., Kastilio-Vitloch, A.X., Nucl.Instr.Meth. B 65, 341 (1992)CrossRefGoogle Scholar
36. Hornton, L.L., Bentley, J., Romana, L., Perez, A., McHargue, C.J., McCallum, J.C., Nucl.Instir.Meth. B 65, 345 (1992)CrossRefGoogle Scholar
37. Argawal, A.M. and Dunham, S.T., J.Appl.Phys. 78, 5313 (1995)Google Scholar
38. Huang, H. and Ghoniam, N., J.Nucl.Mater. 212–215, 148 (1994)CrossRefGoogle Scholar
39. Pacaud, Y., Skorupa, W., Perez-Rodriguez, A., Brauer, G., Stoemenos, J., Barklie, R.C., Nucl.Instr.Meth.B112, 321 (1996)Google Scholar
40. Brauer, G., Anwand, W., Coleman, P.G. and Knights, A.P., Plazaola, F., Pacaud, Y., Skorupa, W., Stōrmer, J. and Willutzki, P., Phys.Rev. B 54, 3084 (1996).CrossRefGoogle Scholar
41. Perez-Rodriguez, A., Pacaud, Y., Calvio-Barro, L., Serre, C., Skorupa, W., Morante, J.R., J.Electr. Mater. 25, 541 (1996)CrossRefGoogle Scholar
42. Boise, W., Conrad, J., Rödle, T. and Weber, T., Surf.Coat.Techn. 74–75, 927 (1995)Google Scholar
43. Chehaidar, A., Caries, R., Zwick, A., Meunier, C., Cros, B. and Durand, J., J.Non-Cryst.Sol. 169, 37 (1994)CrossRefGoogle Scholar
44. Wong, J., Diaz de ia Rubia, T., Guinan, M.W., Tobin, M., Perlado, J.M., Perez, A.S., Sanz, J., J.Nucl.Mater. 212–215, 143 (1994)CrossRefGoogle Scholar
45. Sayed, M., Jefferson, J.H., Walker, A.B. and Cullis, A.G., Nucl.Instr.Meth. B 102, 232 (1995)CrossRefGoogle Scholar
46. Hart, R.R., Dunlap, H.L. and Marsh, O.J., Rad.Effects 9, 261 (1971)CrossRefGoogle Scholar
47. Corbett, J.W., Electron Radiation Damage in Semiconductors and Metals, (Academic Press, N.Y. 1966, p.89)Google Scholar
48. Barry, A.L., Lehmann, B., Fritsch, D., and Brāunig, D., IEEE Trans.Nucl.Sci. 38, 1111 (1991)CrossRefGoogle Scholar
49. Thompson, D.A., Golanski, A., Haugen, K.H., Stevanovic, D.V., Carter, G., Christodoulides, C.E., Rad.Eff. 52, 69 (1980).CrossRefGoogle Scholar
50. Wang, K.W., Spitzer, W.G., Hubler, G.K. and Sandra, D.K., J.Appl.Phys. 58, 4553 (1985)CrossRefGoogle Scholar
51. Spitznagel, J.A., Wood, S., Choyki, W.J., Doyle, N.J., Bradshaw, J., and Fishman, S.G., Nucl.lnstr.Meth. B 16, 237 (1986)CrossRefGoogle Scholar
52. Heera, V., Stoemenos, J., Kögler, R. and Skorupa, W., J.Appl.Phys. 77, 2999 (1995)CrossRefGoogle Scholar
53. Weber, W.J., Wang, L.M. and Yu, N., Nuci.Instr.Meth. B 116, 322 (1996)CrossRefGoogle Scholar
54. Musumeci, P., Calcagno, L., Grimaldi, M.G. and Foti, G., Nucl.Instr.Meth. B116, 327 (1996)CrossRefGoogle Scholar
55. Roorda, S., Custer, J.S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Polman, A., Spaepen, F., Nucl.Instr.Meth. B59/60, 344 (1991)CrossRefGoogle Scholar
56. Heera, V., Schell., N. Prokert, F., Seifarth, H., Skorupa, W., to be publischedGoogle Scholar
57. Davis, R.F., Thin Solid Films 181,1 (1989)CrossRefGoogle Scholar
58. Inoue, N., Itoh, A., Kimoto, T., Matsunami, H., Nakata, T., and Watanabe, M., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.) Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996), p. 525 Google Scholar
59. Ryu, J., Kim, H.J. and Davis, R.F., Mat.Res.Soc.Symp.Proc. 52, 165 (1986)CrossRefGoogle Scholar
60. Pacaud, Y., Heera, V., Yankov, R.A., Kögler, R., Brauer, G., Voelskow, M., Skorupa, W., Stoemenos, J., Perez-Rodriguez, A., Calvo-Barrio, L., Serre, C., Morante, J.R., Barklie, R., Collins, M., Holm, B., presented at 1996 UIT, Austin 1996 Google Scholar
61. Pacaud, Y., Stoemenos, J., Brauer, G., Yankov, R.A., Heera, V., Voelskow, M., Kōgler, R., Skorupa, W., Nucl.Instr.Meth. B 120, 177 (1996)CrossRefGoogle Scholar
62. Barklie, R.C., Collins, M., Holm, B., Pacaud, Y., Skorupa, W., J.Electr. Materials, to be publishedGoogle Scholar
63. Pacaud, Y., Skorupa, W., Stoemenos, J., Nucl.Instr.Meth. B 120, 181 (1996)CrossRefGoogle Scholar
64. Yoshii, K., Suzaki, Y., Takeuchi, A., Yasutake, K., Kawabe, H., Thin Solid Films 199, 85 (1991)CrossRefGoogle Scholar
65. Olson, G.L., Roth, J.A., Mater.Sci.Rep. 3, 1 (1988)CrossRefGoogle Scholar
66. Bohn, H.G., Williams, J.M., McHargue, C.J., Begun, G.M., J.Mater.Res. 2, 107 (1987)CrossRefGoogle Scholar
67. Glaser, E., Heft, A., Heindl, J., Kaiser, U., Bachmann, T., Wesch, W., Strunk, H.P. and Wendler, E., Inst.Phys.Conf.Ser. 142, 557 (1996)Google Scholar
68. Heera, V., Kōgler, R., Skorupa, W. and Stoemenos, J., Appi.Phys.Lett. 67, 1999 (1995)CrossRefGoogle Scholar
69. Edmond, J.A., Withrow, S.P., Wadlin, W., and Davis, R.F., Mat.Res.Soc.Symp.Proc. 77, 193 (1987)CrossRefGoogle Scholar
70. Kawase, D., Ohno, T., Iwasaki, T. and Yatsuo, T., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) p. 513 Google Scholar
71. Priolo, F., Rimini, E., Mater.Sci.Rep. 5, 319 (1990)CrossRefGoogle Scholar
72 Kōgler, R., Heera, V., Skorupa, W., Voelskow, M., in Williams, J.S., Elliman, R.G., Ridgeway, M.C (eds.) Proc. IBMM 1996, Elsevier Science B.V., p.912 Google Scholar
73. Behrisch, R. (ed.), Sputtering by particle bombardment, Topics in Applied Physics, Vol.47 (1981), Vol. 52 (1983), Springer Verlag, Berlin CrossRefGoogle Scholar
74. Sigmund, P., Phys. Rev. 184, 383 (1969)CrossRefGoogle Scholar
75. Eckstein, W.: Computersimulation of Ion-Solid Interaction, Springer Series in Materials Science, Vol.10 (Springer, Berlin, Heidelberg 1991)Google Scholar
76. Garcia-Rosales, C., Eckstein, W., Roth, J., J.Nuci.Mater. 218, 8 (1994)CrossRefGoogle Scholar
77. Mohri, M., Watanabe, K., Yamashina, T., Doi, H. and Hayakawa, K., J.Nucl.Mater. 75, 309 (1978)CrossRefGoogle Scholar
78. Roth, J., Bohdansky, J., Martinelli, A.P., Radiat. Eff. 48, 213 (1980)CrossRefGoogle Scholar
79. Hechtl, E., Bohdansky, J., Roth, J., J.Nucl.Mater. 103& 104, 333 (1981).CrossRefGoogle Scholar
80. Comas, J. and Cooper, B.C., J.Appl.Phys. 37, 2820 (1966)CrossRefGoogle Scholar
81. Pezoldt, J., Stottko, B., Kupris, G. and Ecke, G., Mater.Sci.Eng. B 29, 94 (1995)CrossRefGoogle Scholar
82. Maissel, L.I. and Glang, R. (eds.)”Handbook of Thin Film Technology”, McGraw-Hill, NY 1970, p.440 Google Scholar
83. Malherbe, J.B., Critical Reviews in Solid State and Materials Science, 19, 55 (1994)CrossRefGoogle Scholar
84. Eckstein, W., Garcia-Rosales, C., Roth, J. and Ottenberger, W., IPP-Report 9/82, Garching 1993 Google Scholar
85. Schneider, P., Bischoff, L., Teichert, J. and Hesse, E., Nuci.Instr.Meth. B 117, 77 (1996)CrossRefGoogle Scholar
86. Muelhoff, L., Choyke, W.J., Bozack, M.J., and Yates, J. T Jr., J.Appl.Phys. 60, 2842 (1986)CrossRefGoogle Scholar
87. Ghoshtagore, R.N., Solid-State Electronics 9, 178 (1966)CrossRefGoogle Scholar
88. Mohri, M., Watanabe, K., Yamashina, T., J.Nucl.Mater. 75, 7 (1978)CrossRefGoogle Scholar
89. Philipps, V., Vietzke, E. and Trinkaus, H., J.Nucl.Mater. 179–181, 25 (1991)CrossRefGoogle Scholar
90. Vaughn, W.L. and Maahs, H.G., J.Am.Ceram.Soc. 73, 1540 (1990)CrossRefGoogle Scholar
91. Narushima, T., Goto, T., Iguchi, Y. and Hirai, T., J.Am.Ceram.Soc. 74, 2583 (1991)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ion Implantation and Annealing Effects in Silicon Carbide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ion Implantation and Annealing Effects in Silicon Carbide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ion Implantation and Annealing Effects in Silicon Carbide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *