Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-13T13:50:34.021Z Has data issue: false hasContentIssue false

Investigation of Solid-State Immiscibility and Thermoelectric Properties of the System PbTe – PbS

Published online by Cambridge University Press:  31 January 2011

Steven N Girard
Affiliation:
s-girard@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Jiaqing He
Affiliation:
jiaqing-he@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Vinayak P Dravid
Affiliation:
v-dravid@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Mercouri G Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Chemistry, Evanston, Illinois, United States
Get access

Abstract

We have shown that (Pb1-mSnmTe)1-x(PbS)x where m = 0.05 and x = 0.08 exhibits a ZT of ˜1.4 at 700 K. This system incorporates two thermoelectric systems: PbSxTe1-x and Pb1-xSnxTe. Here we report the thermoelectric properties of PbSxTe1-x (x = 0.08 and 0.30). The material PbS0.08Te0.92 exhibits nucleation and growth of PbS precipitates, while PbS0.30Te0.70 exhibits PbS precipitation through spinodal decomposition phase separation. We report the thermoelectric properties of this system as a result of the differing precipitation phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Böttner, H., Chen, G., and Venkatasubramanian, R., MRS Bull. 31, 211 (2006).Google Scholar
2 Nolas, G. S., Poon, J., and Kanatzidis, M. G., MRS Bull. 31, 199 (2006).Google Scholar
3 Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
4 Poudeu, P. F. P., D'Angelo, J., Downey, A. D., Short, J. L., Hogan, T. P., and Kanatzidis, M. G., Angew. Chem. Int. Ed. 45, 3835 (2006).Google Scholar
5 Androulakis, J.; Hsu, K. F., Pcionek, R., Kong, H., Uher, C., D'Angelo, J. J., Downey, A., Hogan, T., and Kanatzidis, M. G., Adv. Mat. 18, 1170 (2006).Google Scholar
6 Sootsman, J. R., Pcionek, R. J., Kong, H., Uher, C., and Kanatzidis, M. G., Chem. Mater. 18, 4993 (2006).Google Scholar
7 Androulakis, J., Lin, C.-H., Kong, H.-J., Uher, C., Wu, C.-I., Hogan, T., Cook, B. A., Caillat, T., Paraskevopoulos, K. M., and Kanatzidis, M. G., J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
8 Orihashi, M., Noda, Y., Chen, L. D., Goto, T., and Hirai, T., J. Phys. Chem. Solids 61, 919 (2000).Google Scholar
9 Darrow, M. S., White, W. B., and Roy, R., Mater. Sci. Eng. 3, 289 (1969).Google Scholar
10 Wald, F., Energy Convers. 8, 135 (1968).Google Scholar
11 Gelbstein, Y., Gotesman, G., Lishzinker, Y., Dashevsky, Z., and Dariel, M. P., Scr. Mater. 58, 251 (2008).Google Scholar
12 Gunton, J. D. and Droz, M., Lecture Notes in Physics: Introduction to the Theory of Metastable and Unstable States, Vol. 183 (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983) pp. 113.Google Scholar