Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-5dxdz Total loading time: 0.141 Render date: 2022-01-18T16:47:36.615Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Investigation of Mg2Si formation from Si and Mg by using spark plasma sintering synthesis

Published online by Cambridge University Press:  13 March 2015

Kota Sunohara
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
Koya Arai
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
Tomoyuki Nakamura
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan SWCC Showa Cable Systems Co., LTD. 4-1-1 Minami-Hashimoto Chuo-Ku Sagamihara, Kanagawa, Japan
Kenjiro Fujimoto
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
Yuki Yamaguchi
Affiliation:
Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
Tsutomu Iida
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
Keishi Nishio
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
Get access

Abstract

In this study, we fabricated Mg2Si from metal Mg and Si with different particle sizes (425 - 300, 300 - 180, and 75 μm or less) using spark plasma sintering (SPS) equipment. Additionally, the Mg2Si formation was investigated. A sieved Si powder was mixed with metal Mg powder in an inert gas (Ar) atmosphere. The mixture was placed in a graphite die while still in an Ar atmosphere and subjected to SPS at 923 K and 1113 K. The obtained sintering bodies were Mg2Si particles with a size of about 5 μm. Then, the sintered bodies were evaluated by X-ray diffraction (XRD). As a result, it was confirmed that generation of Mg2Si increased with decreasing Si particle size.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heller, M. W. and Danielson, G. C., J. Phys. Chem. Solids 23, 601 (1962)CrossRef
LaBotz, R. J., Mason, D. R., and O’Kane, D. F., J. Electrochem. Soc. 110, 121 (1963)CrossRef
Noda, Y., Kon, H., Furukawa, Y., Otsuka, N., Nishida, I., and Matsumoto, K., Mater. Trans. JIM 33, 845 (1992)CrossRef
Tani, J. and Kido, H., Physica B 223, 364 (2005)
Zaitsev, V. K., Fedorv, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Yu., and Vedernikov, M. V., Phys. Rev. B74, 045207 (2006)CrossRef
Kajlkawa, T., Shida, K., Sugihara, S.. International Conference on Thermoelectrics Proc. 275278 (1997)
JCPDS 340458(ICDD)
JCPDS 10714938(ICDD)
JCPDS 350821(ICDD)
JCPDS 261481(ICDD)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of Mg2Si formation from Si and Mg by using spark plasma sintering synthesis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Investigation of Mg2Si formation from Si and Mg by using spark plasma sintering synthesis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Investigation of Mg2Si formation from Si and Mg by using spark plasma sintering synthesis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *