Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-08T10:04:29.305Z Has data issue: false hasContentIssue false

Investigation of ETCH Profiles in Etching of PZT and Pt Thin Films

Published online by Cambridge University Press:  10 February 2011

Chee Won Chung
Affiliation:
Electronic Materials Lab., Materials Sector, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
Inyong Song
Affiliation:
Electronic Materials Lab., Materials Sector, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
Jong Sig Lee
Affiliation:
Electronic Materials Lab., Materials Sector, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
Get access

Abstract

Reactive ion etching of PbZrxTi1−xO3 (PZT) and Pt thin films was studied by using chlorine and fluorine gas chemistry in an Inductively Coupled Plasma (ICP). PZT films were etched by varying the etching parameters including coil RF power, dc-bias voltage to substrate, and gas pressure. Etching characteristics of PZT films were investigated in terms of etch rate, etch selectivity, etch profile. Etch profile along with etch anisotropy was observed as a function of etching parameter by field emission scanning electron microscopy (FESEM). For the understanding of etching mechanism, X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analysis for the film composition were utilized. Platinum thin films have been etched by using Cl2/Ar in an ICP for the development offence-free etching. The redeposited materials formed on the pattern sidewall by using Cl2/Ar gas combination were analyzed by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). We found that the redeposited material was mainly PtCh compound. Based on this result, SiCl4/Cl2/Ar gas chemistry has been proposed as a new etching gas and demonstrated good etching profile of Pt films without unwanted redeposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Parker, L. and Tasch, A., IEEE Circuit & Device Maga 6, 17 (1990).Google Scholar
2 Deb, K. K., Bennett, K. W., Brody, P. S., Melnick, B. M., Integrated Ferroelectrics, 6, 253 (1995).Google Scholar
3 Teowee, G., Boulton, J. M., Franke, E. K., Motakef, S., Alexander, T. P., Bukowski, T. J. and Uhlmann, D. R., Integated Ferroelectrics, 15, 281 (1997).Google Scholar
4 Mancha, S., Ferroelectrics, 135, 131 (1992).Google Scholar
5 Kawaguchi, T., Adachi, H., Setsune, K., Yamazaki, O. and Wasa, K.: Appl. Opt. 23, 2187 (1984).Google Scholar
6 Title, M. A., Walpita, L. M., Chen, W., Lee, S. H. and Chang, W., Appl. Opt. 25, 1509 (1986).Google Scholar
7 Poor, M. R. and Fleddermann, C. B., J. Appl. Phys. 70, 3385 (1991).Google Scholar
8 Saito, K., Choi, J. H., Fukuda, T. and Ohue, M., Jpn. J. Appl. Phys. 31, L1260 (1992).Google Scholar
9 van Glabbeek, J. J., Spierings, G. A. C. M., Ulenaers, M. J. E., Dormans, G. J. M. and Larson, P. K., Mater. Res. Soc. Symp. Proc. 310, 127 (1993).Google Scholar
10 Vijay, D. P., Desu, S. B. and Pan, W., J. Electrochem. Soc. 140, 2635 (1993).Google Scholar
11 Chung, C. W., Lee, W. I. and Lee, J. K., Integrated Ferroelectrics, 11, 259 (1995).Google Scholar
12 Charlet, B. and Davies, K. E., Mater. Res. Soc. Symp. Proc. 310, 363 (1993).Google Scholar
13 Nishikawa, K., Kusumi, Y, Oomori, T, Hanazaki, M., and Namba, K., Jpn. J. Appl. Phys., 32, 6102(1993).Google Scholar
14 Yokoyama, S., Ito, Y., Ishihara, K., Hamada, K., Ohnishi, S., Kudo, J., and Sakiyama, K., Jpn. J. Appl. Phys., 34, 767 (1995).Google Scholar
15 van Glabbeek, J. J., Spierings, G. A. C. M., Ulenaers, M. J. E., Dormans, G. J. M., and Larson, P. K.: Mater. Res. Soc. Symp. Proc. 310 127 (1993).Google Scholar
16 Yoo, W. J., Hahm, J. H., Kim, H. W., Jung, C. O., Koh, Y. B., and Lee, M. Y., Jpn. J. Appl. Phys., 35 2501(1996).Google Scholar
17 Farrell, C. E., Milkove, K. R. Wang, C., and Kotecki, D. E., Integrated Ferroelectrics, 16, 109 (1997).Google Scholar
18 Lide, D. R., Handbook of Chemistry and Physics, 71st ed. (CRC press, Bostom, MA, 1991), pp. 472∼4-118.Google Scholar
19 Fracassi, F., d'Agostino, R. and Cacucci, A., J. Vac. Sci. Technol. A 13, 63 (1995).Google Scholar
20 Ra, Y., Bradley, S. G. and Chen, C. H., J. Vac. Sci. Technol. A 12, 1328 (1994).Google Scholar
21 Chung, C. W. and Kim, C. J., Jpn. J. Appl. Phys., 36, 2747 (1997).Google Scholar
22 Fracassi, F., d'Agostino, R., and Cacucci, A., J. Vac. Sci. Technol. A 13, 63 (1995).Google Scholar
23 Dautremont, W. C., Gottscho, R. A., and Schutz, R. J., in Semiconductor Materials and Process Technology Handbook, McGuire, G. E., Editor, p. 257, Noyes Publications, Park Ridge (1988).Google Scholar
24 Williston, L. R., Bello, I., and Lau, W. M., J. Vac. Sci. Technol. A 10, 1365 (1992).Google Scholar
25 Ou, S. S., J. Vac. Sci. Technol. B 14, 3226 (1996).Google Scholar