Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-4xs5l Total loading time: 0.15 Render date: 2021-06-15T08:23:18.711Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Interfacial Segregation in Ionic Conductors: Ceria

Published online by Cambridge University Press:  10 February 2011

D. A. Blom
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Y.-M. Chiang
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Grain boundary segregation in cerium dioxide doped with varying amounts of gadolinium oxide and tantalum oxide has been measured with x-ray energy dispersive spectroscopy using a Vacuum Generators HB603 Scanning Transmission Electron Microscope (STEM). The data has been analyzed in the framework of both elastic relaxation and space charge segregation forces with a limited number of surface sites. Results show that multiple driving forces must be taken into account to explain aliovalent solute segregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Tuller, H. L. and Nowick, A. S., J. Electrochem. Soc. 122 (2), 255 (1975).CrossRefGoogle Scholar
2. Steele, B. C. H., Chem. and Ind. 19, 651 (1986).Google Scholar
3. Tschöpe, A., Ying, J. Y., Amonlirdviman, K., and Trudeau, M. L. in Molecularlv Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G.-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Proc. 351, Pittsburgh, PA, 1994) pp. 251256.Google Scholar
4. Gerhardt, R. and Nowick, A. S., J. Am. Ceram. Soc. 69 (9), 641 (1986);. 69 (9), 647 (1986).CrossRefGoogle Scholar
5. Hwang, S.-H. and Chen, I.-W., J. Am. Ceram. Soc. 73 (11), 3269 (1990).CrossRefGoogle Scholar
6. Winnubst, A. J. A., Kroot, P. J. M. and Burggraaf, A. J., J. Phys. Chem Solids 44 (10), 955 (1983).CrossRefGoogle Scholar
7. Boutz, M. M. R., Winnubst, A. J. A. and Burggraaf, A. J., J. of the Europ. Ceram. Soc. 13, 89 (1994).CrossRefGoogle Scholar
8. Theunissen, G. S. A. M., Winnubst, A. J. A. and Burggraaf, A. J., J. Mater. Sci. 27, 5057 (1992).CrossRefGoogle Scholar
9. Hughes, A. E., J. Am. Ceram. Soc. 78 (2), 369 (1995).CrossRefGoogle Scholar
10. Yan, M. F., Cannon, R. M. and Bowen, H. K., J. Appl. Phys. 54 (2), 764 (1983).CrossRefGoogle Scholar
11. Frenkel, J., Kinetic Theory of Liquids, (Oxford University Press, New York, 1946).Google Scholar
12. Kliewer, K. L. and Kohler, J. S., Phys. Rev. 140 (4A), A1226 (1965).CrossRefGoogle Scholar
13. Kliewer, K. L., Phys. Rev. 140 (4A), A1241 (1965); J. Phys. Chem. Solids 27 705 (1966); J. Phys. Chem. Solids 27 719 (1966).CrossRefGoogle Scholar
14. Poeppel, R. B. and Blakely, J. M., Surf. Sci. 15, 507 (1969)CrossRefGoogle Scholar
15. Blakely, J. M. and Danyluk, S., Surf. Sci. 40, 37 (1973).CrossRefGoogle Scholar
16. Danyluk, S. and Blakely, J. M., Surf. Sci. 41, 359 (1974).CrossRefGoogle Scholar
17. Ikeda, J. A. S., Chiang, Y.-M. and Garratt-Reed, A. J., Proc. XIII International Congress on X-ray Optics and Microanalvsis. IOP Publications, 1992.Google Scholar
18. Dceda, J. A. S., Chiang, Y.-M., Garratt-Reed, A. J. and Vander Sande, J. B., J. Am. Ceram. Soc, 76(10), 2447 (1993).Google Scholar
19. McLean, D., Grain Boundaries in Metals, (Clarendon Press, Oxford, 1957).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interfacial Segregation in Ionic Conductors: Ceria
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interfacial Segregation in Ionic Conductors: Ceria
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interfacial Segregation in Ionic Conductors: Ceria
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *