Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-23T21:46:48.333Z Has data issue: false hasContentIssue false

Interaction of Spherical Nanoparticles with a Highly Focused Beam of Light

Published online by Cambridge University Press:  01 February 2011

Ibrahim Kursat Sendur
Affiliation:
kursat.sendur@gmail.com, Sabanci University, Mechatronics, Orhanli-Tuzla, Istanbul, 34956, Turkey, +90-216-483-9527, +90-216-483-9550
William Challener
Affiliation:
william.a.challener@seagate.com, Seagate Technology Research Center, Pittsburgh, PA, 15222, United States
Oleg Mryasov
Affiliation:
oleg.mryasov@seagate.com, Seagate Technology Research Center, Pittsburgh, PA, 15222, United States
Get access

Abstract

Interaction of a highly focused beam of light with spherical nanoparticles is investigated for various incident field polarizations. First, an analytical solution is obtained to calculate the interaction of a highly focused beam of light with a spherical particle. To accurately express the incident electric field near the focus of an aplanatic lens, the technique established by Richards and Wolf is used. Using this analytical solution, electric field distributions of various spherical nanoparticles made of silver are investigated for highly focused linearly and radially polarized beams. The effect of the half angle of the focused beam is investigated. In addition a three-dimensional finite element method based solution is obtained and compared with the analytical solution for problems involving a highly focused beam of light interacting with a spherical particle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jensen, H., Z. Phys., 106, 620 (1937).Google Scholar
2. Crowell, J. and Ritchie, R. H., Phys. Rev., 172, 436440 (1968).Google Scholar
3. Kokkinakis, T. and Alexopoulos, K., Phys. Rev. Lett., 28, 16321634 (1972).Google Scholar
4. Kelly, K. L. et al. , J. Phys. Chem. B, 107, 668677 (2003).Google Scholar
5. Kerker, M., Appl. Optics, 18, 11801189 (1979).Google Scholar
6. Stockli, T. et al. , Phys. Rev. B, 57, 1559915612 (1998).Google Scholar
7. Sqalli, O. et al. , J. Appl. Phys., 92, 10781083 (2002).Google Scholar
8. Krenn, J. R. et al. , J. Microsc., 202, 122128 (2001).Google Scholar
9. Krenn, J. R. et al. , J. Microsc., 209, 167172 (2003).Google Scholar
10. Krenn, J. R. et al. , Phys. Rev. Lett., 82, 25902593 (1999).Google Scholar
11. Franzen, S. et al. , J. Phys. Chem. A, 106, 65336540 (2002).Google Scholar
12. Kottmann, J. P. et al. , J. Microsc., 202, 6065 (2001).Google Scholar
13. Kottmann, J. P. and Martin, O. J. F., Appl. Phys. B, 73, 299304 (2001).Google Scholar
14. Kottmann, J. P. and Martin, O. J. F., Phys. Rev. B, 64, 235402 (2001).Google Scholar
15. Morita, N. et al. , IEEE T. Antenn. Propag., 16, 724 (1968).Google Scholar
16. Tsai, W.-C. and Pogorzelski, R. J., J. Opt. Soc. Am.,. 65, 1457 (1975).Google Scholar
17. Tam, W. G. and Corriveau, R., J. Opt. Soc. Am.,. 68, 763 (1978).Google Scholar
18. Kim, J. S. and Lee, S. S., J. Opt. Soc. Am.,. 73, 303 (1983).Google Scholar
19. Gouesbet, G., Grehan, G., and Maheu, B., J. Opt., 16, 83 (1985).Google Scholar
20. Wolf, E., Proc. Roy. Soc. London Ser. A, 253, 349357, (1959).Google Scholar
21. Richards, B. and Wolf, E., Proc. Roy. Soc. London Ser. A, 253, 358379, (1959).Google Scholar
22. Hartschuh, A., Sanchez, E. J., Xie, X. S., and Novotny, L., Phys. Rev. Lett., 90, 095503 (2003).Google Scholar
23. Challener, W. A., Sendur, I. K., and Peng, C., Opt. Express, 11, 31603170 (2003)Google Scholar
24. Sendur, K., Challener, W., and Peng, C., J. Appl. Phys., 96, 27432752 (2004).Google Scholar
25. Palik, E. D., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).Google Scholar