Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dkhcg Total loading time: 0.163 Render date: 2021-06-16T01:16:38.437Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals

Published online by Cambridge University Press:  15 March 2011

N. Koch
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
J. Ghijsen
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
R. Ruiz
Affiliation:
Vanderbilt University, Department of Physics and Astronomy Nashville, TN 37235, U.S.A.
J. Pflaum
Affiliation:
3. Physikalisches Institut, Universitaet Stuttgart, D-70569 Stuttgart, Germany
R. L. Johnson
Affiliation:
II. Institut für Experimentalphysik, Universität Hamburg, D-22761 Hamburg, Germany
J.-J. Pireaux
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. Schwartz
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, U.S.A.
A. Kahn
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Get access

Abstract

A number of low workfunction metals (samarium, alkali metals) were deposited onto vacuum sublimed thin films of pentacene. The change in the valence electronic structure of the organic material was studied by in situ ultraviolet photoemission spectroscopy (UPS). Alkali metal intercalation leads to the appearance of a new photoemission feature within the pentacene energy gap, due to a charge transfer from the alkali atoms to the lowest unoccupied molecular orbital (LUMO) of the organic material. The energy spacing between this emission feature and the relaxed highest occupied molecular orbital (HOMO) of the pristine molecule is 1 eV. From X-ray photoemission spectroscopy core level analysis, we estimate a concentration ratio of two alkali metal atoms per pentacene molecule at maximum intercalation level, leading to a complete filling of the LUMO. This is consistent with the results from UPS that the new emission is always observed below the Fermi-level. Samarium is found to exhibit a more subtle interaction with pentacene: the molecular orbitals remain almost unperturbed upon Sm deposition. The resulting energy level alignment at this interface seems to be very favorable for the injection of electrons from Sm into pentacene, as the HOMO-onset is found at 1.8 eV below the metal Fermi edge. This value is close to the 2.2 eV HOMO-LUMO gap of pentacene measured by UPS and inverse photoemission spectroscopy, thus corresponding to a small electron injection barrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Tang, C. W. and Slyke, S. A. v., Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackey, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, 539 (1990).CrossRefGoogle Scholar
3. Bulovic, V., Gu, G., Burrows, P. E., Forrest, S. R., and Thompson, M. E., Nature 380, 29 (1996).CrossRefGoogle Scholar
4. Schön, J. H., Dodabalapur, A., Kloc, C., and Batlogg, B., Science 290, 963 (2000).CrossRefGoogle Scholar
5. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80, 2501 (1996).CrossRefGoogle Scholar
6. Schön, J. H., Berg, S., Kloc, C., and Batlogg, B., Science 287, 1022 (2000).Google Scholar
7.Y Harada, Ozaki, H., Ohno, K., Phys. Rev. Lett 52, 2269 (1984).Google Scholar
8. Ramsey, M. G., Steinmuller, D., and Netzer, F. P., Phys. Rev. B 42, 5902 (1990).CrossRefGoogle Scholar
9. Fahlman, M., Beljonne, D., Logdlund, M., Friend, R. H., Holmes, A. B., Bredas, J. L., and Salaneck, W. R., Chem. Phys. Lett. 214, 327 (1993).CrossRefGoogle Scholar
10. Greczynski, G., Fahlman, M., and Salaneck, W. R., J. Chem. Phys. 113, 2407 (2000).CrossRefGoogle Scholar
11. Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 89, 449 (2001).CrossRefGoogle Scholar
12. Parthasarathy, G., Shen, C., Kahn, A., and Forrest, S. R., J. Appl. Phys. 89, 4986 (2001).CrossRefGoogle Scholar
13. Johnson, R. L. and Reichardt, J., Nucl. Instr. Methods 208, 719 (1983).Google Scholar
14. Silinsh, E. A., Organic Molecular Crystals (Springer, Berlin, 1980).CrossRefGoogle Scholar
15. Koch, N., Leising, G., Yu, L. M., Rajagopal, A., Pireaux, J. J., and Johnson, R. L., J. Vac. Sci. Technol. 18, 295 (2000).CrossRefGoogle Scholar
16. Salaneck, W. R. and Brédas, J.-L., Adv. Mater. 8, 48 (1996).CrossRefGoogle Scholar
17. Koch, N., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., J. Phys. Chem. B 104, 1434 (2000).CrossRefGoogle Scholar
18. Iucci, G., Xing, K., Lögdlund, M., Fahlman, M., and Salaneck, W. R., Chem. Phys. Lett. 244, 139 (1995).CrossRefGoogle Scholar
19. Koch, N., Zojer, E., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., Adv. Funct. Mater. 11, 51 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
20. Ozaki, H., J. Chem. Phys. 113, 6361 (2000).CrossRefGoogle Scholar
21. Dannetun, P., Lögdlund, M., Fredriksson, C., Lazzaroni, R., Fauquet, C., Stafström, S., Spangler, C. W., Brédas, J. L., Salaneck, W. R., J. Chem. Phys. 100, 6765 (1994).CrossRefGoogle Scholar
22. Salaneck, W. R., Stafström, S., and Brédas, J.-L., Conjugated polymer surfaces and interfaces; electronic and chemical structure of interfaces for polymer light emitting devices (Cambridge Univ. Press, Cambridge, 1996).CrossRefGoogle Scholar
23. Campbell, R. B., Trotter, J., and Robertson, J. M., Acta Crystallographica 14, 705 (1961).CrossRefGoogle Scholar
24. Schuerlein, T. J., Schmidt, A., Lee, P. A., Nebesny, K. W., and Armstrong, N. R., Jpn. J. Appl. Phys. Part 1 34, 3837 (1995).CrossRefGoogle Scholar
25. Oji, H., Ito, E., Furuta, M., Kajikawa, K., Ishii, H., Ouchi, Y., and Seki, K., J. Electron Spectrosc. Relat. Phenom. 101–103, 517 (1999).CrossRefGoogle Scholar
26. Onoda, M., Tada, K., and Nakayama, H., J. Appl. Phys. 86, 2110 (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *