Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-gf4tf Total loading time: 0.575 Render date: 2021-07-29T13:32:58.782Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Integrated (Ba,Sr)TiO3 Thin-Film Technology for RF and Microwave Applications

Published online by Cambridge University Press:  01 February 2011

Toshimasa Suzuki
Affiliation:
suzuki-t@jty.yuden.co.jp, Taiyo Yuden Co., Ltd., Materials R&D department, 5607-2 Nakamuroda, Takasaki, Gunma, WY, 370-3347, Japan, +81273608307, +81273608315
Daiki Ishii
Affiliation:
d-ishii@jty.yuden.co.jp, Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Yoshiki Iwazaki
Affiliation:
y-iwazaki@jty.yuden.co.jp, Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Kentaro Morito
Affiliation:
kmorito@jty.yuden.co.jp, Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Youichi Mizuno
Affiliation:
ymizuno@jty.yuden.co.jp, Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Get access

Abstract

The microwave tunable capability and its related material optimization of (Ba,Sr)TiO3 thin films in the parallel-plate capacitor form is discussed in terms of the dependence of barium concentration, acceptor doping, and in-plane film stress, based on the present broadband microwave characterization technique under various bias fields. The barium-content dependence indicates the tradeoff between tunability and dielectric loss, and the notable field-induced loss in SrTiO3 is confirmed as an intrinsic quasi-Debye contribution. The Mg dopant incorporated into a perovskite lattice shows almost no effectiveness on tunable device performance, except for enhanced insulation as an electron acceptor, while the low bias-field dependence of the dielectric loss suggests the possibility of the partial occupation of the alkaline-earth-ion site by Mg. The reduction of in-plane thermal stress controlled by the pressure during sputtering deposition leads to higher permittivity and tunability while degrading the film crystallinity by ion bombardment. The low-frequency loss tends to increase with crystal damage; however, the microwave loss remains unchanged, revealing the applicability of sputtering stress control to real microwave devices. In addition, we demonstrate the operation of an analog phase shifter using parallel-plate ferroelectric tunable capacitors and its application to a phased array antenna monolithically integrated on a silicon substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mizuno, Y. Hagiwara, T. and Kishi, H. J. Ceram. Soc. Japan 115, 360364 (2007).CrossRefGoogle Scholar
2. Imanaka, Y.Multilayered Low Temperature Cofired Ceramics (Ltcc) Technology,” (Springer, 2004)Google Scholar
3. Miyazaki, M. Ida, K. Miyazaki, M. Sawatari, T. Yokota, H. Kobayashi, H. Hamada, Y. Sugiyama, Y., Arai, R. and Nakamura, Y. J. J. Inst. Electronics Packaging 10, 298304 (2007).CrossRefGoogle Scholar
4. Ota, K. Iizuka, F. Satomi, M. Yasuda, M. Nakajima, K. Ogino, T. and Fujimoto, M. J. Ceram. Soc. Japan 110, 5, 436 (2002).CrossRefGoogle Scholar
5. Godara, L.C., Proc. IEEE, 1031-1060 (1997).Google Scholar
6. Taeksoo, Ji, Yoon, H. Abraham, J.K. and Varadan, V.K. IEEE Trans. Microw. Theory Tech. 54, 3, 11311138 (2006).CrossRefGoogle Scholar
7. Zhao, Z. Wang, X. Choi, K. Lugo, C. and Hunt, A. T. IEEE Trans. Microw. Theory Tech. 55(2), 430437 (2007)CrossRefGoogle Scholar
8. Vendik, O.G. Hollmann, E.K. Kozyrev, A.B. and Prudan, A.M. J. Superconductivity, 12(2), 325338 (1999).CrossRefGoogle Scholar
9. Tagantsev, A.K. Sherman, V.O. Astafiev, K.F. Venkatesh, J. and Setter, N. J. Electroceramics, 11(1-2) 566 (2003)CrossRefGoogle Scholar
10. Gurevich, V.L. and Tagantsev, A.K. Advances in Physics, 40, 6, 719767 (1991)CrossRefGoogle Scholar
11. Georgian, S. Vorobiev, A. Kuylenstierna, D. Deleniv, A. Abadei, S. Eriksson, A. and Rundqvist, P., Integrated Ferroelectrics, 66, 125 (2004).CrossRefGoogle Scholar
12. Iwazaki, Y. Ohta, K. and Suzuki, T. J. European Ceram. Soc. 26(10-11), 18411844 (2006).CrossRefGoogle Scholar
13. Smolenskii, G.A. and Isupov, V.A. Zhurnal Tekhnicheskoi Fiziki, 24, 1375 (1954).Google Scholar
14. DiDomenico, M. Porto, S.P.S. and Wemple, S. H. Phys. Rev. Lett. 19, 855857 (1967).CrossRefGoogle Scholar
15. Jonscher, A. K. J. Phys. D: Appl. Phys. 32, R57–R70 (1999).CrossRefGoogle Scholar
16. Morito, K. Iwazaki, Y. Suzuki, T. and Fujimoto, M. J. Appl. Phys. 94, 5199 (2003).CrossRefGoogle Scholar
17. Tagantsev, A.K. and Astafiev, K.F. Integrated Ferroelectrics 39(1-4), 251260 (2001).CrossRefGoogle Scholar
18. Tenne, D.A. Soukiassian, A. Zhu, M.H. Clark, A.M. Xi, X.X. Choosuwan, H. He, Q. Guo, R. and Bhalla, A.S. Phys. Rev. B67, 012302 (2003).CrossRefGoogle Scholar
19. Yuan, Z. Lin, Y. Weaver, J. Chen, X. and Chen, C.L. Appl. Phys. Lett. 87, 152901 (2005).CrossRefGoogle Scholar
20. Zhu, X.H. Zheng, D.N. Peng, W. Li, J. and Chen, Y.F. Mater. Lett. 60(9-10), 12241228 (2006)CrossRefGoogle Scholar
21. Li, R. Cheng, J. Meng, Z. and Wu, W. J. Mater. Sci.: Mater. in Elec., 17(8), 587591 (2006).Google Scholar
22. Jeon, Y.A. Seo, T.S. and Yoon, S.G. Jpn. J. Appl. Phys. 40(11), 64966500 (2001)CrossRefGoogle Scholar
23. Chiu, M.C. Yao, H.C. Huang, C.J. and Shieu, F.S. J. Appl. Phys. 102, 014110 (2007)CrossRefGoogle Scholar
24. Suzuki, T. Nishi, Y. and Fujimoto, M. Jpn. J. Appl. Phys. 39(1), 192196 (2000)CrossRefGoogle Scholar
25. Vendik, O.G. Vendik, I.B. and Sherman, V.O. Integrated Ferroelectrics 43(1), 8189 (2002)CrossRefGoogle Scholar
26. Morito, K. and Suzuki, T. J. Appl. Phys. 97, 104107 (2005)CrossRefGoogle Scholar
27. Devonshire, A.F. J. Advances in Physics, 3(10), 85130 (1954)CrossRefGoogle Scholar
28. Pertsev, N.A. Zembilgotov, A.G. and Tagantsev, A.K. Phys. Rev. Lett. 80, 19881991 (1998)CrossRefGoogle Scholar
29. Park, W.Y. Ahn, K.H. and Hwang, C.S. Appl. Phys. Lett., 83, 4387 (2003)CrossRefGoogle Scholar
30. Hancock, T.M. and Rebeiz, G.M. IEEE Trans. Microw. Theory Tech. 53(3), 977983 (2005)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Integrated (Ba,Sr)TiO3 Thin-Film Technology for RF and Microwave Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Integrated (Ba,Sr)TiO3 Thin-Film Technology for RF and Microwave Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Integrated (Ba,Sr)TiO3 Thin-Film Technology for RF and Microwave Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *