Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2fphr Total loading time: 0.256 Render date: 2021-06-19T10:03:06.111Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy

Published online by Cambridge University Press:  01 March 2011

Felix Börrnert
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Alicja Bachmatiuk
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Sandeep Gorantla
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Jamie H. Warner
Affiliation:
University of Oxford, Parks Road, Oxford OX13PH, United Kingdom
Bernd Büchner
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany
Mark H. Rümmeli
Affiliation:
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e. V., PF 270116, 01171 Dresden, Germany Technische Universität Dresden, 01062 Dresden, Germany
Get access

Abstract

The molecular structure and dynamics of carbon nanostructures is much discussed throughout the literature, mostly from the theoretical side because of a lack of suitable experimental techniques to adequately engage the problem. A technique that has recently become available is low-voltage aberration-corrected transmission electron microscopy. It is a valuable tool with which to directly observe the atomic structure and dynamics of the specimen in situ. Time series aberration-corrected low-voltage transmission electron microscopy is used to study the dynamics of single-wall carbon nanotubes in situ. We confirm experimentally previous theoretical predictions for the agglomeration of adatoms forming protrusions and subsequent removal. A model is proposed how lattice reconstruction sites spread. In addition, the complete healing of a multi-vacancy consisting of ca. 20 missing atoms in a nanotube wall is followed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Avouris, P., Acc. Chem. Res. 35, 1026 (2002).CrossRefGoogle Scholar
2. Charlier, J.-C., Acc. Chem. Res. 35, 1063 (2002).CrossRefGoogle Scholar
3. Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
4. Smith, B. W. and Luzzi, D. E., J. Appl. Phys. 90, 3509 (2001).CrossRefGoogle Scholar
5. Meyer, J. C., Chuvilin, A., and Kaiser, U. in Materials Science, edited by Grogger, W., Hofer, F., and Pölt, P., ( MC2009 , Verlag der Technischen Universität Graz, Graz, 2009) pp. 347348.Google Scholar
6. Warner, J. H., Schäffel, F., Zhong, G., Rümmeli, M. H., Büchner, B., Robertson, J., and Briggs, G. A. D., ACS Nano 3, 1557 (2009).CrossRefGoogle Scholar
7. del Valle, M., Gutiérrez, R., Tejedor, C., and Cuniberti, G., Nature Nanotechnol. 2, 176 (2007).CrossRefGoogle Scholar
8. Börrnert, F., Börrnert, C., Gorantla, S., Liu, X., Bachmatiuk, A., Joswig, J.-O., Wagner, F. R., Schäffel, F., Warner, J. H., Schönfelder, R., Rellinghaus, B., Gemming, T., Thomas, J., Knupfer, M., Büchner, B., and Rümmeli, M. H., Phys. Rev. B 81, 085439 (2010).CrossRefGoogle Scholar
9. Ding, F., Jiao, K., Lin, Y., and Yakobson, B. I., Nano Lett. 7, 681 (2007).CrossRefGoogle Scholar
10. Rodriguez-Manzo, J. A. and Banhart, F., Nano Lett. 9, 2285 (2009).CrossRefGoogle Scholar
11. Börrnert, F., Gorantla, S., Bachmatiuk, A.,, Warner, J. H., Ibrahim, I., Thomas, J., Gemming, T., Eckert, J., Cuniberti, G., Büchner, B., and Rümmeli, M. H., Phys. Rev. B 81, 201401(R) (2010).CrossRefGoogle Scholar
12. Rümmeli, M. H., Kramberger, C., Löffler, M., Jost, O., Bystrzejewski, M., Grüneis, A., Gemming, T., Pompe, W., Büchner, B., and Pichler, T., J. Phys. Chem. B 111, 8234 (2007).CrossRefGoogle Scholar
13. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S., Nature (London) 430, 870 (2004).CrossRefGoogle Scholar
14. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
15. Tsetseris, L. and Pantelides, S. T., Carbon 47, 901 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

In-situ Observations of Restructuring Carbon Nanotubes via Low-voltage Aberration-corrected Transmission Electron Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *