Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-x25dq Total loading time: 0.139 Render date: 2022-01-16T22:40:45.930Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

In-Line Ambient Impurity Measurement on a Rapid Thermal Process Chamber by Atmospheric Pressure Ionisation Mass Spectrometry

Published online by Cambridge University Press:  10 February 2011

Eiichi Kondoh
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Guy Vereecke
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Marc M. Heyns
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
Karen Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium. INSYS, Katholieke Universiteit Leuven, Belgium
Thomas Gutt
Affiliation:
Steag-AST elektronik GmbH, DaimlerstraBe 10, 89160 Dornstadt, Germany.
Zsolt Nwnyeil
Affiliation:
Steag-AST elektronik GmbH, DaimlerstraBe 10, 89160 Dornstadt, Germany.
Get access

Abstract

Gaseous impurities in the chamber of a SHS2800ε rapid thermal processor were quantitatively measured by using atmospheric pressure ionisation mass spectrometry (APIMS). APIMS is a very sensitive technique to detect trace impurities in a bulk (1 atm) gas. A wide dynamic range (0.1 ppb - 10 ppm) measurement was successfully performed, which allowed in-situ monitoring of impurities during RTP. This work reports the fundamental behaviour of ambient impurities originating from different sources. The sources discussed in this paper are threefold: system background, wafer loading, and the wafer itself. Ambient management requires a better understanding of the independent contribution of each source on processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Q.F., Lauwers, A., Jonckx, F., de Potter, M., Chen, C.-C., and Maex, K., Mat. Res. Soc. Symp. Proc., 402, 221 (1996).CrossRefGoogle Scholar
2. Haider, A., McAndrew, J., and Inman, R., Electrochemical Soc. Proc., 97–22, 484495 (1997).Google Scholar
3. Siefering, K., Whitlock, W., and Berger, H., J. Electrochem. Soc., 140, 1165 (1993).CrossRefGoogle Scholar
4. Vereecke, G., Kondoh, E., Richardson, P., Maex, K., Heyns, M.M., and Ndnyei, Z., in the Proceedings of the 44”’ Annual Technical Meeting Institute Environmental Science and Technology.Google Scholar
5. Verma, N. K., Haider, A. M., and Shadman, S., J. Electrochem. Soc., 140, 1459 (1993).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In-Line Ambient Impurity Measurement on a Rapid Thermal Process Chamber by Atmospheric Pressure Ionisation Mass Spectrometry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

In-Line Ambient Impurity Measurement on a Rapid Thermal Process Chamber by Atmospheric Pressure Ionisation Mass Spectrometry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

In-Line Ambient Impurity Measurement on a Rapid Thermal Process Chamber by Atmospheric Pressure Ionisation Mass Spectrometry
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *