Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-lwxm7 Total loading time: 0.299 Render date: 2021-06-21T12:54:33.192Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Infrared Studies of the Double Acceptor Zinc in Silicon

Published online by Cambridge University Press:  25 February 2011

A. Dörnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
R. Kienle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
K. Thonke
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-7000 Stuttgart 80, FRG
P. Stolz
Affiliation:
Institut für angewandte Physik, Universität Erlangen, D-8520 Erlangen, FRG
G. Pensl
Affiliation:
Institut für angewandte Physik, Universität Erlangen, D-8520 Erlangen, FRG
D. Grünebaum
Affiliation:
Institut für MetalIforschung, Universität Münster, D-4400 Münster, FRG
N.A. Stolwijk
Affiliation:
Institut für MetalIforschung, Universität Münster, D-4400 Münster, FRG
Get access

Abstract

In the present paper, optical absorption studies on the neutral charge state of the double acceptor zinc in silicon are presented. Measurements were carried out in the mid infrared (MIR) and in the near infrared (NIR) region. The MIR absorption spectra show the excitation series of an effective-masslike hole, from which the Zn° level position is calculated to be at Ev + 319. 1 meV. A splitting of the ground state into 3 sublevels is assigned to hole-hole coupling and crystal-field splitting. Absorption spectra obtained in the NIR are interpreted in terms of an A° X-type bound exciton.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below.

References

1 for an overview and further references see: Ramdas, A. K. and Rodriguez, S., Rep. Prog. Phys. 44. 1297 (1981).CrossRefGoogle Scholar
2 Crouch, R.K., Robertson, J.B., and Gilmer, T.E. Jr., Phys. Rev B 5, 3111 (1972).CrossRefGoogle Scholar
3 Kleverman, M., and Grimmeiss, H.G., Semicond. Sci. Technol. 1, 45 (1986).CrossRefGoogle Scholar
4 Tomokage, H., Nakashima, H., and Hashimoto, K., Jap. J. Appl. Phys. 21, 805 (1982).CrossRefGoogle Scholar
5 Fuller, C.S. and Morin, F.J., Phys. Rev. 105, 379 (1957).CrossRefGoogle Scholar
6 Carlson, R.O., Phys. Rev. 108, 1390 (1957).CrossRefGoogle Scholar
7 Lemke, H., phys. stat. sol. (a) 72, 177 (1982), A.C. Wang, L.S. Lu, and C.T. Sah, Phys. Rev. B 30, 5896 (1984).CrossRefGoogle Scholar
8 Stolz, P., Pensl, G., Grünebaum, D., Stolwijk, N., to be published in Materials Science and Engineering, 1989.Google Scholar
9 Kornilov, B.V., Soviet Physics - Solid State 5, 2420 (1964), Y.I. Zavadskii and B.V. Kornilov, phys. stat. sol. 42, 617 (1970).Google Scholar
10 Slensky, A.F. and Bube, R.H., Phys. Rev B 6, 1328 (1972), J.M. Herman III and C.T. Sah, J. Appl. Phys. 44, 1259 (1973).CrossRefGoogle Scholar
11 Tardella, A. and Pajot, B., J. Physique 43, 1789 (1982).CrossRefGoogle Scholar
12 Armelles, G., Barrau, J. , Brousseau, M., Pajot, B., and Naud, C., Solid State Commun. 56, 303 (1985).CrossRefGoogle Scholar
13 Baldereschi, A. and Lipari, N.O., Proc. 13th Int. Conf. on Physics of Semiconductors, Ed: Fumi, F.G. (Tipografia Marves, Rome, 1976), p. 595.Google Scholar
14 Mayo, S., Lowney, J.R., and Bell, M.I., in “Microscopic Identification of Electronic Defects in Semiconductors”, Ed.: Johnson, N.M., Bishop, S.G. and Watkins, G.D., Mat. Res. Soc. Symp. Proc. 46, (Pittsburgh 1986), p. 297 Google Scholar
15 Watkins, G.D. and Beall Fowler, W., Phys. Rev. B 16, 4524 (1977).CrossRefGoogle Scholar
16 The binding energy of this center is close to the value obtained for the electrically active center Zn(X2), observed in DLTS [12]. Therefore we accept this nomenclature for the optically active center. Additional correlations will be reported elsewhere.Google Scholar
17 Thewalt, M.L.W., Labrie, D., Booth, I.J., Clayman, B. P., Lightowlers, E. C., and Haller, E.E., Physica 146B, 47 (1987).Google Scholar
18 Chapman, R.A., Hutchinson, W.G., and Estle, T. L., Phys. Rev. Lett. 17, 132 (1966).CrossRefGoogle Scholar
19 Thewalt, M.L.W., Clayman, B.P., and Labrie, D., Phys. Rev. B32, 2663 (1985).CrossRefGoogle Scholar
20 Elliot, K.R., Osbourn, G.C., Smith, D.L., and McGill, T.C., Phys. Rev. B 17, 1808 (1978).CrossRefGoogle Scholar
21 Vouk, M.A. and Lightowlers, E.C., J. of Luminescence 11, 357 (1977).CrossRefGoogle Scholar
22 Nevin, J.H. and Henderson, H.T., J. Appl. Phys. 46, 2130 (1975).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Infrared Studies of the Double Acceptor Zinc in Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Infrared Studies of the Double Acceptor Zinc in Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Infrared Studies of the Double Acceptor Zinc in Silicon
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *