Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-06T05:46:04.260Z Has data issue: false hasContentIssue false

The Influence of Plasma Composition on the Properties of Plasma Treated Biomaterials

Published online by Cambridge University Press:  21 March 2011

Nilson C. Cruz
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Elidiane C. Rangel
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Giovana Z. Gadioli
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Rogério P. Mota
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Roberto Y. Honda
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Mauricio A. Algatti
Affiliation:
Laboratório de Plasmas e Aplicações, UNESP, Campus de Guaratinguetá, 12516-410, Guaratinguetá, SP, Brazil
Wido H. Schreiner
Affiliation:
Laboratório de Interfaces e Filmes Finos, Departamento de Física, UFPR, 81531-990, Curitiba, PR, Brazil
Get access

Abstract

The response of a biological environment when in contact with an artificial material is primarily determined by the material surface properties such as composition, contact angle and free surface energy [1,2]. Owing to that, different treatments have been employed to improve the performance of biocompatible materials. In this sense, plasma-based techniques are very attractive because they enable the surface processing of materials with virtually any geometry preserving bulk properties. Furthermore, other characteristics make plasma treatment of particular interest in biomaterial processing. Those characteristics include, for instance, a) the possibility of using a large number of different chemicals to introduce any desired functional group on the surface, b) the treatment is performed in an intrinsically sterile environment and, c) different kind of materials (such as ceramics, metals and polymers) including those chemically inert can be treated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Lopes, M. A., Monteiro, F. J., Santos, J. D., Serro, A. P., Saramago, B., J Biomed. Mat. Res. 45(4), 370 (1999).Google Scholar
[2]Ong, Y. L., Razatos, A., Georgiou, G., Sharma, M. M., Langmuir, 15(8), 2719 (1999).Google Scholar
[3]Abe, Y., Chinzei, T., Isoyama, T., Ono, T., Mochizuki, S., Saito, I., Guba, P., Karita, T., Sun, Y. P., Kouno, A., Suzuki, T., Baba, K., Mabuchi, K., Imachi, K., Artif. Organs 23(3), 221 (1999).Google Scholar
[4]Gorman, S. P., Jones, D. S., Mawhinney, W. M., McGovern, J. G., Adair, C. G., J. Mat. Sci. Mat. Med. 8(10), 631 (1997)Google Scholar
[5]Andrade, J. D., Med. Instrum. 7(2), 110 (1973).Google Scholar
[6]Murphy, P. V., Croix, A. La, Merchant, S., Benhard, W. in Medical Applications of Plastics, ed. by Gregor, H. P., John Wiley, New York, pp 5974 (1971).Google Scholar
[7]Jouan, P.Y., Peignon, M. C., Cardinaud, C., Lemperiere, G., Appl. Surf. Sci. 68, 595 (1993).Google Scholar
[8]Inkin, V. N., Kirpilenko, G. G., Dementjev, A. A., Maslakov, K. I., Diamond Relat. Mater. 9, 715 (2000).Google Scholar
[9]Mérel, P., Tabbal, M., Chaker, M., Moisa, S., Margot, J., Appl. Surf. Sci. 136, 105 (1998).Google Scholar
[10]Walter, K. C., Nastasi, M., Munson, C., Surf. Coat. Technol. 93, 287 (1997).Google Scholar
[11]Yasuda, H., Sharma, A. K., Yasuda, T., J. Polym. Sci. Polym. Chem. Ed. 19, 1285 (1981).Google Scholar
[12]Kuzuya, M., Noguchi, A., Tanaka, Y., Sawada, K., Yang, D. T., Yavagihara, Y., Kamiya, K., Proc. Jpn. Symp. Plasma Chem. 2, 209 (1989).Google Scholar