Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-fkkrz Total loading time: 0.339 Render date: 2021-06-15T15:13:14.557Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The Influence of Ni on the Transport Properties of CoSb3

Published online by Cambridge University Press:  01 February 2011

Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu
Jeffrey S. Dyck
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu
Wei Chen
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu
Gregory P. Meisner
Affiliation:
Materials and Processes Laboratory, GM R&D and Planning, Warren, MI 48090
Jihui Yanga
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, cuher@umich.edu Materials and Processes Laboratory, GM R&D and Planning, Warren, MI 48090
Corresponding
E-mail address:
Get access

Abstract

The effect of Ni doping on the Co site of the binary skutterudite CoSb3 is investigated. We measured resistivity, Hall effect, magnetoresistance, thermopower, thermal conductivity, and magnetization of a series of samples of the form Co1-xNixSb3 with x in the range x=0 to x=0.01. We find that Ni takes the tetravalent state Ni4+, assumes the d6 electronic configuration for the lower energy non-bonding orbitals, and gives an electron to the conduction band. Ni doping dramatically suppresses the thermal conductivity, changes the temperature dependence of the thermopower, and increases the carrier concentration. Low temperature anomalies in thermopower, Hall coefficient and magnetoresistance are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Uher, C., Semiconductors and Semimetals, ed. Tritt, T. M., submitted.Google Scholar
2. Nolas, G. S., Morelli, D. T., and Tritt, T. M., Ann. Rev. Mater. Sci. 29 (1999) 89.CrossRefGoogle Scholar
3. Jeitschko, W. and Brown, D. J., Acta Crystallogr. B33 (1977) 3401.CrossRefGoogle Scholar
4. Stetson, N. T., Kauzlarich, S. M., and Hope, H., J. Solid State Chem. 91 (1994) 140.CrossRefGoogle Scholar
5. Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Phys. Rev. B61 (2000) 2475.CrossRefGoogle Scholar
6. Slack, G. A. in CRC Handbook of Thermoelectrics, ed. Rowe, D. M., Boca Raton, FL, CRC Press, p. 407 (1995).Google Scholar
7. Morelli, D. T., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev. B51 (1995) 9622.CrossRefGoogle Scholar
8. Sharp, J. W., Jones, E. C., Williams, R. K., Martin, P. M., and Sales, B. C., J. Appl. Phys. 78 (1995) 1013.CrossRefGoogle Scholar
9. Caillat, T., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys. 80 (1996) 4442.CrossRefGoogle Scholar
10. Mandrus, D., Migliori, A., Darling, T. W., Hundley, M. F., Peterson, E. J., and Thompson, J. D., Phys. Rev. B52 (1995) 4926.Google Scholar
11. Arushanov, E., Fess, K., Kaefer, W., Kloc, Ch., and Bucher, E., Phys. Rev. B56 (1997) 1911.CrossRefGoogle Scholar
12. Anno, H., Hatada, K., Shimizu, H., Matsubara, K., Notohara, Y., Sakakibara, T., Tashiro, H., and Motoya, K., J. Appl. Phys. 83 (1998) 5270.CrossRefGoogle Scholar
13. Dudkin, L. D. and Abrikosov, N. Kh., Zhurnal Neorganicheskoi Khimii, 2 (1957) 212.Google Scholar
14. Zobrina, B. N. and Dudkin, L. D., Sov. Phys.—Solid State 1 (1960) 1668.Google Scholar
15. Yang, J., Meisner, G. P., Morelli, D. T., and Uher, C., Phys. Rev. B—submitted.Google Scholar
16. Yang, J., Morelli, D. T., Meisner, G. P., and Uher, C., in Thermal Conductivity 25/ Thermal Expansion 13, ed. Uher, C. and Morelli, D. T., Technomic Publishing, Lancaster PA, pp. 130 (2000).Google Scholar
17. Katsuyama, S., Shichijo, Y., Ito, M., Majima, K., and Nagai, H., J. Appl. Phys. 84 (1998) 6708.CrossRefGoogle Scholar
18. Stokes, K. L., Ehrlich, A. C., and Nolas, G. S., Mat. Res. Soc. Symp. Proc. 545 (1999) 339.CrossRefGoogle Scholar
19. Anno, H., Matsubara, K., Notohara, Y., Sakakibara, T., and Tashiro, H., J. Appl. Phys. 86 (1999) 3780.CrossRefGoogle Scholar
20. Uher, C., J. Appl. Phys. 62 (1987) 4636.CrossRefGoogle Scholar
21. Singh, D. J. and Pickett, W. E., Phys. Rev. B50 (1994) 11235.CrossRefGoogle Scholar
22. Sofo, J. O. and Mahan, G. D., Mat. Res. Soc. Symp. Proc. 545 (1999) 315.CrossRefGoogle Scholar
23. Dudkin, L. D., Sov. Phys.—Solid State 2 (1960) 371.Google Scholar
24. Chen, B., Xu, J., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J.-P., Caillat, T. and Borshchevsky, A., Phys. Rev. B55 (1997) 1476.CrossRefGoogle Scholar
25. Goldsmid, H. J., Electronic Refrigeration, Pion Limited (1986).Google Scholar
26. Ziman, J. M., Electrons and Phonons, Oxford University Press (1960).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Influence of Ni on the Transport Properties of CoSb3
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Influence of Ni on the Transport Properties of CoSb3
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Influence of Ni on the Transport Properties of CoSb3
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *