Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-9sqjz Total loading time: 0.229 Render date: 2021-05-06T22:50:30.748Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of Metal Impurity Defects on the Electrical and Optical Properties of ITO Films on the PEN Substrates

Published online by Cambridge University Press:  01 February 2011

Hauk Han
Affiliation:
Hauk.Han@asu.edu, Arizona State University, School of Materials, University drive and Mill, Tempe, AZ, 85287, United States, 480-965-5021
Terry L Alford
Affiliation:
ta@asu.edu, Arizona State University, School of Materials, Tempe, AZ, 85287-8706, United States
Corresponding
E-mail address:
Get access

Abstract

Indium tin oxide (ITO) has drawn a great deal of attention due to its potential use as transparent electrodes in organic light emitting diode (OLED) and photovoltaic applications. This work focuses on understanding the role of impurity defects on the electrical conduction and transmittance of ITO. Thin films of ITO with high carrier concentration have been deposited onto polyethylene napthalate (PEN) substrates by electron-beam deposition without introduction of oxygen into the chamber. The influence of air anneals on the electrical and optical properties of ITO/PEN samples can is evaluated in terms of the oxygen content and is explained in terms of changes in the free electron concentrations. Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy analysis were used to determine the oxygen content in the film. A Hall effect measurement is used to determine the dependence of electrical properties on oxygen content. The electrical properties of the ITO films such as carrier concentration, electrical mobility, and resistivity abruptly changes after annealing in the air atmospheres. In addition, optical transmittance is improved from 7 to 71 % and optical band gap changes from 3.18 to 3.25 eV after heat treatment. The optical band gap narrowing behavior is because of impurity band and heavy carrier concentration. Metal impurity clusters form in the films as a result of oxygen deficiency and also generate defects and/or impurity states in the band gap and produces an optical band gap shift by merging of these impurity states and conduction band.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Han, H., Mayer, J. W., and Alford, T. L., J. Appl. Phys 99, 123711 (2006).CrossRefGoogle Scholar
2. Han, H., Adams, D., Mayer, J. W. and Alford, T. L., J. Appl. Phys 98, 083705 (2005).CrossRefGoogle Scholar
3. Doolittle, L. R., Nucl. Instrum. Meth. Phys. Res. B 9, 344 (1985).CrossRefGoogle Scholar
4. Hartnagel, H. L., Dawar, A. L., Jain, A. K., and Jagadish, C., Semiconducting Transparent Thin Films (Institute of Physics, Philadelphia, 1995).Google Scholar
5. Tahar, B. H., Ban, T., Ohya, Y., and Takahashi, Y., J. Appl. Phys. 82, 865 (1997).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Metal Impurity Defects on the Electrical and Optical Properties of ITO Films on the PEN Substrates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Metal Impurity Defects on the Electrical and Optical Properties of ITO Films on the PEN Substrates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Metal Impurity Defects on the Electrical and Optical Properties of ITO Films on the PEN Substrates
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *