Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-6vg6l Total loading time: 0.247 Render date: 2022-12-03T03:54:29.341Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

The Influence of Groundwater on the Stability of Silica Colloids

Published online by Cambridge University Press:  15 February 2011

Pirkko Holtta
Affiliation:
University of Helsinki, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
Mari Lahtinen
Affiliation:
University of Helsinki, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
Martti Hakanen
Affiliation:
University of Helsinki, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
Jukka Lehto
Affiliation:
University of Helsinki, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
Piia Juhola
Affiliation:
Posiva Oy, Olkiluoto, 27160 Eurajoki, Finland
Get access

Abstract

Non-cementitious grouts have been tested in Olkiluoto for the sealing of fractures with the small hydraulic apertures. A promising non-cementitious inorganic grout material for sealing the fractures with the apertures less than 0.05 mm is commercial colloidal silica called silica sol. The potential relevance of colloid-mediated radionuclide transport is highly dependent on their stability in different geochemical environments. The objective of this work was to follow stability of silica sol colloids in low salinity Allard and saline OLSO reference groundwater (pH 7–11) and in deionized milliQ water. Stability of silica sol colloids was followed by measuring particle size distribution, zeta potential, colloidal and reactive silica concentrations. The particle size distributions were determined applying the dynamic light scattering (DLS) method and zeta potential based on dynamic electrophoretic mobility. The colloidal silica concentration was calculated from DLS measurements applying a calibration using a standard series of silica sol. Dissolved reactive silica concentration was determined using the molybdate blue (MoO4) method.

These results confirmed that the stability of silica colloids dependent significantly on groundwater salinity. In deionized water, particle size distribution and zeta potential was rather stable except the most diluted solution. In low salinity Allard, particle size distribution was rather constant and the mean particle diameter remained less than 100 nm. High negative zeta potential values indicated the existence of stable silica colloids. In saline OLSO, particle size distribution was wide from a nanometer scale to thousands of nanometers. The disappearance of large particles, decrease in colloidal particle concentration and zeta potential near zero suggest flocculation or coagulation. Under prevailing saline groundwater conditions in Olkiluoto silica colloids released from silica sol are expected to be instable but the possible influence of low salinity glacial melt water has to be considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 EKA Chemicals, Eka gel MEYCO MP320 http://www.colloidalsilica.com/eka.asp.Google Scholar
2 Persoff, P., Apps, J., Moridis, G. and Whang, J. M., J. Alloys Compounds, 125, 461 (1999).Google Scholar
3 Axelsson, M. and Gustafson, G., Tunneling and Underground Space Tech. 21, 499 (2006).CrossRefGoogle Scholar
4 Funehag, J. and Gustafson, G., Tunneling and Underground Space Tech. 23, 9 (2008).CrossRefGoogle Scholar
5 Boden, A. and Sievanen, U., SKB R–05–40/Posiva WR 2005–24 (2005).Google Scholar
6 Torstenfelt, B., Jansson, M. and Atienza, M., SKB Arbetsrapport TU–05–04 (2005).Google Scholar
7 Buddemeier, R. W. and Hunt, J. R., Appl. Geochem. 3, 535 (1988).CrossRefGoogle Scholar
8 Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K. and Thompson, J. L., Nature 397, 56 (1999).CrossRefGoogle Scholar
9 Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B., Tkachev, V. V. and Myasoedov, B. F., Science 314, 638 (2006).CrossRefGoogle Scholar
10 Puls, R. W. and Powell, R. M., Environ. Sci. Technol. 26, 614 (1992).CrossRefGoogle Scholar
11 Vilks, P. and Baik, M., J. Contam. Hydrol. 47, 197 (2001).CrossRefGoogle Scholar
12 Yamaguchi, T., Nakayama, S., Vandergraaf, T. T., Drew, D. J. and Vilks, P., J. Power and Energy Systems 2, 186 (2008).CrossRefGoogle Scholar
13 Vuorinen, U. and Hirvonen, H., Posiva WR–2005–03 (2005).Google Scholar
14 Takala, M. and Manninen, P., Posiva WR–2006–98 (2006).Google Scholar
15 Takala, M. and Manninen, P., Posiva WR–2008–32 (2008).Google Scholar
16 Holtta, P., Hakanen, M., Lahtinen, M., Leskinen, A., Lehto, J. and Juhola, P., in Scientific Basis for Nuclear Waste Management XXXII, edited by Rebak, R.B., Hyatt, N.C. and Pickett, D.A. (Mater. Res. Soc. Symp. Proc. Volume 1124, Warrendale, PA, 2009) 1124-Q10-14.Google Scholar
17 Iler, R. K., The Chemistry of Silica, John Wiley & Sons, New York (1979).Google Scholar
18 Allard, B. and Beall, J., J. Environ. Sci. Health 6, 507 (1979).Google Scholar
19 Vuorinen, U. and Snellman, M., Posiva WR–1998–61 (1998).Google Scholar
21 Filella, M., Zhang, J., Newman, M. E. and Buffle, J., Colloids Surf. A 120, 27 (1997).CrossRefGoogle Scholar
22 Fishman, M. J. and Friedman, L. C. (Eds.), Techniques of Water-Resources Investigations of the U.S. Geological Survey, USGS–TWRI 5, A1, 545 (1989).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Influence of Groundwater on the Stability of Silica Colloids
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Influence of Groundwater on the Stability of Silica Colloids
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Influence of Groundwater on the Stability of Silica Colloids
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *