Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-ws85r Total loading time: 0.173 Render date: 2021-06-24T16:49:18.678Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Influence of Deposition Parameters on Surface Texturing of ZnO:Al Films Prepared by In-line RF Magnetron Sputtering

Published online by Cambridge University Press:  31 January 2011

Jun-Sik Cho
Affiliation:
jscho@kier.re.kr, Korea Institutte of Energy Research, Photovoltaic Research Center, Deajeon, Korea, Republic of
Young-Jin Kim
Affiliation:
yj3917@naver.com, Korea Institutte of Energy Research, Photovoltaic Research Center, Deajeon, Korea, Republic of
Jeong Chul Lee
Affiliation:
jclee@kier.re.kr, Korea Institutte of Energy Research, Photovoltaic Research Center, Deajeon, Korea, Republic of
Sang-Hyun Park
Affiliation:
parksh@kier.re.kr, Korea Institutte of Energy Research, Photovoltaic Research Center, Deajeon, Korea, Republic of
Kyung Hoon Yoon
Affiliation:
y-kh@kier.re.kr, Korea Institutte of Energy Research, Photovoltaic Research Center, Deajeon, Korea, Republic of
Get access

Abstract

A systematic study on the effect of sputtering deposition parameters on material properties of Al doped ZnO (ZnO:Al) films prepared by an in-line rf magnetron sputtering and on surface morphology of the films after wet etching process was carried out. For application to silicon thin film solar cells as a front electrode, the as-deposited films were surface-textured by a dilute HCl solution to improve the light scattering properties such as haze and angle resolved distribution of scattered light on the film surfaces. The microstructure of as-deposited films is affected significantly by the working pressure and film compactness decreases with increasing working pressure from 1.5 mTorr to 10 mTorr. High quality ZnO:Al films with electrical resistivity of 4.25 × 10-4 Ω cm and optical transmittance of 80% in a visible range are obtained at low working pressure of 1.5 mTorr and substrate temperature of 100℃. Crater-like surface morphologies are observed on the textured ZnO:Al films after wet etching. The size and shape of craters are closely dependent on the microstructure and film compactness of as-deposited films. Haze values of the textured ZnO:Al films are improved in a whole wavelength of 300 – 1100 nm compared to commercial SnO2:F films (Asahi U type) and incident light on the textured films is scattered effectively with 30° angle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Mosbah, A., Abed, S., Bouhssira, N., Aida, M.S., and Tomasella, E., Mater. Sci. Eng. B 129, 144 (2006)CrossRefGoogle Scholar
2 Sahu, D.R. and Huang, J.-L., Sol. Energy. Sol. Mater. 93, 1923 (2009).CrossRefGoogle Scholar
3 Tak, Y.H., Kim, K.B., Park, H.G., Lee, K.H., and Lee, J.R., Thin Solid Films 411, 12 (2002).CrossRefGoogle Scholar
4 Ruske, F., Jacobs, C., Sittinger, V., Szyszka, B., and Werner, W., Thin Solid Films 515, 8695 (2007).CrossRefGoogle Scholar
5 Nasuno, Y., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys., Part 2 40, L303 (2001).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Deposition Parameters on Surface Texturing of ZnO:Al Films Prepared by In-line RF Magnetron Sputtering
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Deposition Parameters on Surface Texturing of ZnO:Al Films Prepared by In-line RF Magnetron Sputtering
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Deposition Parameters on Surface Texturing of ZnO:Al Films Prepared by In-line RF Magnetron Sputtering
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *