Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.135 Render date: 2021-11-30T12:57:19.346Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Salvo Mirabella
Affiliation:
mirabella@ct.infn.it, CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy, +390953785510, +390953785243
Davide De Salvador
Affiliation:
desalvador@padova.infm.it, University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Enrico Napolitani
Affiliation:
napolitani@padova.infm.it, University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Elena Bruno
Affiliation:
elena.bruno@ct.infn.it, CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy
Giuliana Impellizzeri
Affiliation:
giuliana.impellizzeri@ct.infn.it, CNR-INFM, MATIS, Via Santa Sofia, 64, Catania, I-95123, Italy
Gabriele Bisognin
Affiliation:
bisognin@padova.infm.it, University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Emanuele Francesco Pecora
Affiliation:
emanuele.pecora@ct.infn.it, University of Catania, Physics and Astronomy Department, Via Santa Sofia, 64, Catania, I-95123, Italy
Alberto Carnera
Affiliation:
carnera@padova.infm.it, University of Padova, Physics Department, Via F. Marzolo, 8, Padova, I-35131, Italy
Francesco Priolo
Affiliation:
priolo@ct.infn.it, University of Catania, Physics and Astronomy Department, Via Santa Sofia, 64, Catania, I-95123, Italy
Get access

Abstract

The diffusion of B atoms in crystalline and amorphous Si has been experimentally investigated and modeled, evidencing the indirect mechanism of these mass transport phenomena. The migration of B occurs after interaction with self-interstitials in crystalline Si (c-Si) or with dangling bonds in amorphous Si (a-Si). In the first case, an accurate experimental design and a proper modeling allowed to determine the microscopic diffusion parameters as the B-defect interaction rate, the reaction paths leading to the diffusing species and its migration length. Moreover, by changing the Fermi level position, B atoms are shown to interact preferentially with neutral or doubly positively charged self-interstitials. As far as the amorphous case is concerned, B diffusion is revealed to have a marked transient character and to depend on the B concentration itself. In particular, boron atoms can move after the interaction with dangling bonds whose density is transiently increased after ion implantation or permanently enhanced by the presence of boron atoms themselves. Unexpectedly, B diffusivity in a-Si is seen to be orders of magnitude above than in c-Si and to depend on the thermal history, i.e. the relaxation status of the amorphous phase. These data are presented and their implications discussed.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goesele, U. and Tan, T.Y. in Defects in Semiconductors II, edited by Corbett, J.W. and Mahayan, S. (North-Holland, New York, 1983), p. 45.Google Scholar
2. Cowern, N. E. B., Janssen, K. T. F., vandeWalle, G. F. A., Gravesteijn, D. J., Phys. Rev. Lett. 65, 2434 (1990); N. E. B. Cowern, G. F. A. vandeWalle, D. J. Gravesteijn, C. J. Vriezema, Phys. Rev. Lett. 67, 212 (1991).CrossRefGoogle Scholar
3. Zhu, J. et al., Phys. Rev. B 54, 4741 (1996).CrossRefGoogle Scholar
4. Sadigh, B. et al., Phys. Rev. Lett. 83, 4341 (1999).CrossRefGoogle Scholar
5. Windl, W., Bunea, M.M., Stumpf, R., Dunham, S.T., Masquelier, M.P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
6. Fair, B.R., Pappas, P.N., J. Electrochem. Soc. 122 1241 (1975).CrossRefGoogle Scholar
7. Fahey, P.M., Griffin, P.B., Plummer, J.D., Rev. Mod. Phys. 61 289 (1989).Google Scholar
8. Martin-Bragado, I. et al., Phys. Rev. B 72 35202 (2005).Google Scholar
9. Silvestri, H.H., Mater. Res. Soc. Proc. 719 F13.10 (2002).CrossRefGoogle Scholar
10. Bracht, H.A., Silvestri, H.H., Hallerb, E.E., Solid State Commun. 133 727 (2005).CrossRefGoogle Scholar
11. Salvador, D. De et al., Phys. Rev. Lett. 97, 255902 (2006).Google Scholar
12. Bracht, H., Silvestri, H. H., Sharp, I. D., and Haller, E. E., Phys Rev. B 75, 035211 (2007)CrossRefGoogle Scholar
13. Pantelides, S.T., Phys. Rev. Lett. 57, 2979 (1986); P. C. Kelires and J. Tersoff, Phys. Rev. Lett. 61, 562 (1988).CrossRefGoogle Scholar
14. Bernstein, N., Feldman, J. L. and Fornari, M., Phys. Rev. B 74, 205202 (2006).CrossRefGoogle Scholar
15. Roorda, S., Doorn, S., Sinke, W.C., Scholte, P.M.L.O., vanLoenen, E., Phys. Rev. Lett. 62, 1880 (1989); S. Roorda et al., Appl. Phys. Lett. 56, 2097 (1990).CrossRefGoogle Scholar
16. Stolk, P. A. et al., J. Appl. Phys. 75, 7266 (1994) and references therein.Google Scholar
17. Pawlak, B.J. et al., Appl. Phys. Lett. 86, 101913 (2005).Google Scholar
18. Duffy, R. et al., Appl. Phys. Lett. 84, 4283 (2004).CrossRefGoogle Scholar
19. Venezia, V.C. et al., Mat. Sci. Eng. B 124-125, 245 (2005).CrossRefGoogle Scholar
20. Salvador, D. De et al., Appl. Phys. Lett. 89, 241901 (2006).CrossRefGoogle Scholar
21. Salvador, D. De et al., J. Vac. Sci. Tech. B 26, 382 (2008)CrossRefGoogle Scholar
22. Mirabella, S. et al., Phys. Rev. B 65, 045209 (2002).CrossRefGoogle Scholar
23. Napolitani, E. et al., J. Vac. Sci. Technol. B 24 394 (2006); E. Napolitani et al., Phys. Rev. Lett. 93 055901 (2004).Google Scholar
24. Mirabella, S. et al., Phys. Rev. Lett. (2008) in press.Google Scholar
25. Mattoni, A. and Colombo, L., Phys. Rev. B 69, 45204 (2004).CrossRefGoogle Scholar
26. Myers, S. M. and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996).Google Scholar
27. Muller, G. et al., Phyl. Mag. B 73, 245 (1996); G. Muller, Curr. Opin. Sol. State Mater. Sci. 3 (1998) 364.CrossRefGoogle Scholar
28. Pichler, P., Intrinsic point defects, impurities, and their diffusion in silicon, edit by Selberherr, S., (Springer, Wien-NewYork, 2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *