Hostname: page-component-59f8fd8595-klmmf Total loading time: 0 Render date: 2023-03-22T04:14:38.213Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Immunoreactivity and Characterization of Histidine-Rich Peptide Encapsulated Nanoclusters

Published online by Cambridge University Press:  17 March 2011

Joseph M. Slocik
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
Joshua T. Moore
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
David W. Wright*
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
Corresponding Author. Tel.: 1-615-322-2636. Fax: 1-615-343-1234 E-mail:
Get access


Histidine-rich proteins (HRP), which function in the biological control of inorganic materials, have been identified in the liver fluke Fasciola hepatica, marine polychaetes, humans, and the malarial parasite Plasmodium falciparum. For example, the malarial parasite contains HRP II composed of repeating peptide sequences of Ala-His-His-Ala-His-His-AlaAla-Asp. This peptide was screened as a stabilizing peptide coat for a variety of nanoclusters of Ag0, Au0, ZnS, TiO2, and Ag2S, and characterized by UV-Vis spectroscopy, fluorescence, IR, XRD, and TEM. The resulting nanoclusters were examined for immunoreactivity against a commercial monoclonal antibody for HRP II of P. falciparum.

Research Article
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Kho, R., Torres-Martinez, C.L., and Mehra, R.K., J. Colloid and Interface Sci. 227, 561566 (2000).CrossRefGoogle Scholar
2. Kho, R., Nguyen, L., Torres-Martinez, C.L., and Mehra, R.K., Biochem. And Biophys. Res. Comm. 272, 2935 (2000).CrossRefGoogle Scholar
3. Storhoff, J.J. and Mirkin, C.A., Chem. Rev. 99, 18491862 (1999) and references therein.CrossRefGoogle Scholar
4. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Reike, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., Caplan, A.I., Science 255, 10981105 (1992).CrossRefGoogle Scholar
5. Kirschvink, J.L., Jones, D.S., and Macfadden, J.B., (Eds.) Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. (Plenum, New York, 1985).CrossRefGoogle Scholar
6. Brewer, D. and Lajoie, G., Rapid. Commun. Mass Spec. 14, 17361745 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
7. Wellems, T.E. and Howard, R.J., Proc. Natl. Acad. Sci., U.S.A. 83, 60656069 (1986).CrossRefGoogle Scholar
8. Morgan, W.T., Biochemistry 24, 14961501 (1985).CrossRefGoogle Scholar
9. Waite, J. H., Rice-Ficht, A.C., Biochemistry 28, 61046110 (1989).CrossRefGoogle Scholar
10. Voss-Foucart, M.F., Fonze-Vignaux, M.T., and Jeuniaux, C., Biochem. Syst. 1, 119122 (1973).CrossRefGoogle Scholar
11. Sullivan, D. J. Jr, Gluzman, I.Y., Goldberg, D.E., Science 271, 219222 (1996).CrossRefGoogle Scholar
12. Bryan, G.W., and Gibbs, P.E., J. Mar. Biol. Assoc. U.K. 59, 969973 (1979).CrossRefGoogle Scholar
13. Wilcoxon, J.P., Martin, J.E., and Provencio, P., J. Chem. Phys. 115, 9981008 (2001).CrossRefGoogle Scholar
14. Brelle, M.C., Zhang, J.Z., Nguyen, L., and Mehra, R.K., J. Phys. Chem. A 103, 1019410201 (1999).CrossRefGoogle Scholar
15. Wilcoxon, J.P., and Martin, J.E., J. Chem. Phys. 108 (21), 91379143 (1998).CrossRefGoogle Scholar
16. Dameron, C.T., and Dance, I.G., In Biomimetic Materials Chemistry, Mann, S., Ed. (VCH Publishers, New York, 1996) p. 6991.Google Scholar
17. Spreitzer, G., Whitling, J.M., Madura, J.D., Wright, D.W., J. Chem. Soc., Chem. Commun. 209–210 (2000).Google Scholar
18.Crystallographic data from WWW-MINICRYST, an information calculating system on crystal structure data for minerals supported by the Russian Foundation of Basic Research (grants 96-07-89162, 96-07-89323, 01-07-90052).Google Scholar