Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-plzwj Total loading time: 0.226 Render date: 2022-05-16T13:04:40.523Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

III-V Lattice-Mismatched and III-V-N Materials for Super High Efficiency Multi-Junction Solar Cells

Published online by Cambridge University Press:  13 March 2014

Kazuma Ikeda
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, Aichi, 468-8511, Japan
Masafumi Yamaguchi
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, Aichi, 468-8511, Japan
Boussairi Bouzazi
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, Aichi, 468-8511, Japan
Nobuaki Kojima
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, Aichi, 468-8511, Japan
Yoshio Ohshita
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, Aichi, 468-8511, Japan
Get access

Abstract

We review recent progresses on in-situ observation of lattice relaxation of III-V lattice-mismatched system and analyses of defect properties in III-V-N solar cell materials. We found that there were five phases during the InGaAs growth on GaAs substrate. The transition point of the dominant dislocation behavior could be determined precisely. We also found that compositionally step-graded InGaAs/GaAs(001) buffers with overshooting (OS) layers were effective to control the strain of the top layer from tensile to compression. To understand the defect properties that dominate the electrical property of CBE-grown GaAsN films, we characterized deep levels in CBE-grown GaAsN films by DLTS. In this characterization, a well-known electron trap E1 (Ec-0.33eV) center in n-GaAsN and p-GaAsN was confirmed to be non-radiative recombination center by using double-carrier pulse DLTS.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Guter, W., Schöne, J., Philipps, S. P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A. W., and Dimroth, F., Appl. Phys. Lett. 94, 223504 (2009).CrossRef
Geisz, J. F., Friedman, D. J., Ward, J. S., Duda, A., Olavarria, W. J., Moriarty, T. E., Kiehl, J. T., Romero, M. J., Norman, A. G., and Jones, K. M., Appl. Phys. Lett. 93, 123505 (2008).CrossRef
King, R., Law, D., and Edmondson, K., Appl. Phys. Lett. 90, 183516 (2007).CrossRef
Friedman, D., Geisz, J., Kurtz, S., and Olson, J., J. Cryst. Growth 195, 409 (1998).CrossRef
Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729 (1999).CrossRef
Lee, H. S., Nishimura, K., Yagi, Y., Tachibana, M., Ekins-Daukes, N. J., Ohshita, Y., Kojima, N., and Yamaguchi, M., J. Cryst. Growth 275, e1127 (2005).CrossRef
Nishimura, K., Lee, H.-S., Suzuki, H., Ohshita, Y., Kojima, N., and Yamaguchi, M., Jpn. J. Appl. Phys. 46, 2844 (2007).CrossRef
Uesugi, K. and Suemune, I., J. Cryst. Growth 189/190, 490 (1998).CrossRef
Sasaki, T., Suzuki, H., Sai, A., Lee, J. H., Takahasi, M., Fujikawa, S., Arafune, K., Kamiya, I., Ohshita, Y., and Yamaguchi, M., Appl. Phys. Express 2, 085501 (2009).CrossRef
Sasaki, T., Suzuki, H., Inagaki, M., Ikeda, K., Shimomura, K., Takahasi, M., Kozu, M., Hu, W., Kamiya, I., Ohshita, Y., and Yamaguchi, M., IEEE J. Photovolt. 2, 35 (2012).CrossRef
Johnston, S. W. and Kurtz, S. R., J. Vac. Sci. Technol. A 24, 1252 (2006).CrossRef
Krispin, P., Gambin, V., Harris, J. S., and Ploog, K. H., J. Appl. Phys. 93, 6095 (2003).CrossRef
Bouzazi, B., Suzuki, H., Kojima, N., Ohshita, Y., and Yamaguchi, M., Appl. Phys. Express 3, 051002 (2010).CrossRef
Bouzazi, B., Suzuki, H., Kojima, N., Ohshita, Y., and Yamaguchi, M., Physica B 406, 1070 (2011).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

III-V Lattice-Mismatched and III-V-N Materials for Super High Efficiency Multi-Junction Solar Cells
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

III-V Lattice-Mismatched and III-V-N Materials for Super High Efficiency Multi-Junction Solar Cells
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

III-V Lattice-Mismatched and III-V-N Materials for Super High Efficiency Multi-Junction Solar Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *