Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-w5vlw Total loading time: 0.29 Render date: 2022-01-24T03:11:15.149Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

III-N Epitaxial Growth for Nitride Devices

Published online by Cambridge University Press:  01 February 2011

Russell Dupuis
Affiliation:
russell.dupuis@ece.gatech.edu, Georgia Institute of Technology, School of ECE, 777 Atlantic Drive NW, Atlanta, GA, 30332-0250, United States, 404-385-6094
Theodore Chung
Affiliation:
tchung@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Wonseok Lee
Affiliation:
wonseok@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Peng Li
Affiliation:
pli@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Jae Limb
Affiliation:
jaelimb@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Jae-Hyun Ryou
Affiliation:
jaehyun.ryou@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Dongwon Yoo
Affiliation:
dyoo@ece.gatech.edu, Georgia Institute of Technology, School of Electrical and Computer Engineering, United States
Get access

Abstract

Various GaN-based device structures were grown on (0001) sapphire and 6H-SiC substrates by metalorganic chemical vapor deposition. The device structures of this study include a variety of p-n junction-based devices, such as InGaN/GaN multiple-quantum-well green light emitting diodes, GaN p-i-n vertical rectifiers, and GaN/InGaN heterojunction bipolar transistors. This paper describes the epitaxial growth and device performance characteristics of these device structures. We have developed state-of-of-the-art growth techniques for the materials that are critical for high-performance electronic and optoelectronic devices. High-performance InGaN HBTs, high-voltage GaN rectifiers and long-wavelength green LEDs have been epitaxially grown, fabricated, and characterized. The details of the material growth, device fabrication, and device characterization will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Obtained from Epichem Inc., Haverhill, MA.Google Scholar
2 LayTec EpiTT supplied by LayTec, Berlin, Germany.Google Scholar
3 Perry, W. G., Zheleva, T., Bremser, M. D., Davis, R. F., Shan, W., and Song, J. J., J. Electron. Mater. 26, 224 (1997).CrossRefGoogle Scholar
4 Chen, C., Liu, H., Steigerwald, D., Imler, W., Kuo, C., and Craford, M., J. Electron. Mater. 25, 1004 (1996).CrossRefGoogle Scholar
5 Han, J., Figiel, J., Crawford, M., Banas, M., Bartram, M., Biefeld, R., Song, Y. K., and Nurmikko, A., J. Cryst. Growth 195, 291 (1998).CrossRefGoogle Scholar
6 Makimoto, T., Kumakura, K., and Kobayashi, N., Appl. Phys. Lett. 79, 380 (2001).CrossRefGoogle Scholar
7 Makimoto, T., Kumakura, K., and Kobayashi, N., Appl. Phys. Lett. 83, 1035 (2002).CrossRefGoogle Scholar
8 Makimoto, T., Yamauchi, Y., and Kumakura, K., Appl. Phys. Lett. 84, 1964 (2004).CrossRefGoogle Scholar
9 Makimoto, T., Kumakura, K., and Kobayashi, N., J. Cryst. Growth 221, 350 (2000).CrossRefGoogle Scholar
10 Kumakura, K., Makimoto, T., Kobayashi, N., Jpn. J. Appl. Phys 39, L337 (2000).CrossRefGoogle Scholar
11 McCarthy, L. S., Kozodoy, P., Rodwell, M. J. W., DenBaars, S. P., and Mishra, U. K., IEEE Electron Device Lett. 20, 277 (1999).CrossRefGoogle Scholar
12 Huang, J. J., Hattendorf, M., Feng, M., Lambert, D. J. H., Shelton, B. S., Wong, M. M., Chowdhury, U.. Zhu, T. G., Kwon, H. K., and Dupuis, R. D., IEEE Electron Device Lett. 22, 157 (2001).CrossRefGoogle Scholar
13 Kroemer, H., J. Vac. Sci. Technol. B 1, 126 (1983).CrossRefGoogle Scholar
14 Chung, T., Keogh, D., Chukung, B., Limb, J., Ryou, J.-H., Lee, W., Li, P., Yoo, D., Zhang, X.-B., Zakharov, D., Lilienthal-Weber, Z., Asbeck, P., Feng, M., Shen, S.-C., and Dupuis, R. D., Electronic Material Conference, Santa Barbara, CA (2005); in press in J. Electron Mater‥Google Scholar
15 Chung, T., Limb, J., Yoo, D., Ryou, J.-H., Lee, W., Shen, S.-C., Dupuis, R. D., Kung, C., Feng, M., Keogh, D., and Asbeck, P., submitted to Appl. Phys. Lett. (2005).Google Scholar
16 Trivedi, M. and Shenai, K., J. Appl. Phys. 85, 6889 (1999).CrossRefGoogle Scholar
17 Zeisel, R., Bayerl, M. W., Goennenwein, S. T. B., Dimitrov, R., Ambacher, O., Brandt, M. S., and Stutzmann, M., Phys. Rev. B 61, R16283 (2000).CrossRefGoogle Scholar
18 Lahréche, H., Vennéguès, P., Vaille, M., Beaumont, B., Laügt, M., Lorenzini, P., and Gibart, P., Semicond. Sci. Technol. 14, L33 (1999).CrossRefGoogle Scholar
19 Vennéguès, P. and Lahrèche, H., Appl. Phys. Lett. 77, 4310 (2000).CrossRefGoogle Scholar
20 Moran, B., Hansen, M., Craven, M., Speck, J., and DenBaars, S., J. Crystal Growth 221, 301 (2000).CrossRefGoogle Scholar
21 Kröger, R., Einfeldt, S., Chierchia, R., Reitmeier, Z., Davis, R., and Liu, Q., J. Appl. Phys. 97, 083501 (2005).CrossRefGoogle Scholar
22 Petersson, A., Gustafsson, A., Samuelson, L., Tanaka, S., and Aoyagi, Y., MRS Internet J. Nitride Semicond. Res. 7, 5 (2002).CrossRefGoogle Scholar
23 Krames, M., DoE Workshop on Solid State Lighting, 2003.Google Scholar
24 McCluskey, M. D., Romano, L. T., Krusor, B. S., Johnson, N. M., Suski, T., and Jun, J., Appl. Phys. Lett. 73, 1281 (1998).CrossRefGoogle Scholar
25 McCluskey, M. D., Romano, L. T., Krusor, B. S., Bohr, D. P., Johnson, N. M., and Brennan, S., Appl. Phys. Lett. 72, 1730 (1998).CrossRefGoogle Scholar
26 Chou, C. C., Lee, C. M., and Chyi, J. I., Appl. Phys. Lett. 78, 314, (2001).CrossRefGoogle Scholar
27 Götz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996).CrossRefGoogle Scholar
28 Kitamura, S., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys. 34, L184 (1995).CrossRefGoogle Scholar
29 Kumakura, K., Makimoto, T., and Kobayashi, N., J. Crystal Growth 221, 267 (2000).CrossRefGoogle Scholar
30 Kumakura, K., Makimoto, T., and Kobayashi, N., J. Appl. Phys. 93, 3370 (2003).CrossRefGoogle Scholar
31 Lee, S.-N., Sakong, T., Lee, W., Paek, H., Son, J., Yoon, E., Nam, K., and Park, Y., J. Crystal Growth 261, 249 (2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

III-N Epitaxial Growth for Nitride Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

III-N Epitaxial Growth for Nitride Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

III-N Epitaxial Growth for Nitride Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *