Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.869 Render date: 2021-09-18T05:54:51.960Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Hydrogen Diffusion in Zinc Oxide Thin Films

Published online by Cambridge University Press:  31 January 2011

Wolfhard Beyer
Affiliation:
w.beyer@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Uwe Breuer
Affiliation:
uwe.breuer@fz-juelich.de, Forschungszentrum Jülich GmbH, Zentralabteilung für Chemische Analysen, Jülich, Germany
Frank Hamelmann
Affiliation:
FHamelmann@malibu-solar.de, Malibu GmbH & Co.KG, Jülich, Germany
Jürgen Hüpkes
Affiliation:
j.huepkes@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Andrea Stärk
Affiliation:
a.staerk@fz-juelich.de, Forschungszentrum Jülich GmbH, Zentralabteilung für Chemische Analysen, Jülich, Germany
Helmut Stiebig
Affiliation:
HStiebig@malibu-solar.de, Malibu GmbH & Co.KG, Jülich, Germany
Uwe Zastrow
Affiliation:
u.zastrow@fz-juelich.de, Forschungszentrum Jülich GmbH, IEF5-Photovoltaik, Jülich, Germany
Get access

Abstract

Hydrogen diffusion in zinc oxide thin films was studied by secondary ion mass spectrometry (SIMS) measurements, investigating the spreading of implanted deuterium profiles by annealing. By effusion measurements of implanted rare gases He and Ne the microstructure of the material was characterized. While for material prepared by low pressure chemical vapour deposition an interconnected void structure and a predominant diffusion of molecular hydrogen was found, sputter-deposited ZnO films showed a more compact structure and long range diffusion of atomic hydrogen. Hydrogen diffusion energies of 1.8 – 2 eV, i.e. higher than reported in literature were found. The results are discussed in terms of a H diffusion model analogous to the model applied for hydrogen diffusion in hydrogenated amorphous and microcrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van de Walle, C.G., Phys. Rev. Lett. 85, 86(2000).CrossRefGoogle Scholar
2. Mollwo, E. Z. Phys. 138, 478(1954).CrossRefGoogle Scholar
3. Thomas, D.G. Lander, J.J. J. Chem. Phys. 25, 1136(1956).CrossRefGoogle Scholar
4. Nickel, N.H. Phys. Rev. B 73, 195204(2006).CrossRefGoogle Scholar
5. Beyer, W. Phys. Status Solidi C 1, 1144(2004).CrossRefGoogle Scholar
6. Beyer, W. in: Semiconductors and Semimetals, Vol.61, edited by Nickel, N.H. (Academic Press, San Diego, 1999) p. 165.Google Scholar
7. Beyer, W. Hüpkes, J., Stiebig, H. Thin Solid Films 516, 147(2007).CrossRefGoogle Scholar
8. Anderson, O.L. Stuart, D.A. J. Am. Ceram. Soc. 37, 573(1954).CrossRefGoogle Scholar
9. Eucken, A. Hellwege, H. (Eds.) Landoldt-Börnstein, Atomund Molekularphysik I (Springer Verlag, Berlin, Germany, 1950) p. 32510.Google Scholar
10. Ip, K. Overberg, M.E. Heo, Y.W. Norton, D.P. Pearton, S.J. Kucheyev, S.O. Jagadish, C. Williams, J.S. Wilson, R.G. Zavada, J.M. Appl. Phys. Lett. 81, 3996(2002)CrossRefGoogle Scholar
11. Wardle, M.G. Gross, J.P. Briddon, P.R. Phys. Rev. Lett. 96, 205504(2006).CrossRefGoogle Scholar
12. Ip, K. Overberg, M.E. Heo, Y.W. Norton, D.P. Pearton, S.J. Stutz, C.E. Luo, B. Ren, F. Look, D.C. Zavada, J.M. Appl. Phys. Lett. 82, 385(2003).CrossRefGoogle Scholar
13. Beyer, W. Solar Energy Mat. & Solar Cells 78, 235(2003).CrossRefGoogle Scholar
14. Kunat, M. Girol, S.G. Becker, T. Burghaus, U. Wöll, C., Phys. Rev. B 66, 081402(R) (2002).CrossRefGoogle Scholar
15. Kerr, J.A. Trotman-Dickenson, A.F., in: CRC Handbook of Chemistry and Physics, 58th Edition (CRC Press, West Palm Beach, Fl. 1978) F219.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrogen Diffusion in Zinc Oxide Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hydrogen Diffusion in Zinc Oxide Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hydrogen Diffusion in Zinc Oxide Thin Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *