Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-mgjtl Total loading time: 0.379 Render date: 2022-06-27T00:39:58.562Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Hydration and Proton Transfer in 3M™ PEM Ionomers: An Ab Initio Study

Published online by Cambridge University Press:  07 February 2012

Jeffrey K. Clark II
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Stephen J. Paddison*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
Get access

Abstract

Electronic structure calculations were performed to study the effects local hydration, neighboring side chain connectivity, and protogenic group separation have in facilitating proton dissociation and transfer in fragments of 3M ionomers under conditions of low hydration. Two different types of ionomers, each consisting of a poly(tetrafluoroethylene) (PTFE) backbone, were considered: (1) perfluorosulfonic acid (PFSA) ionomeric fragments containing two pendant side chains (–O(CF2)4SO3H) of distinct separation along the PTFE backbone to model different equivalent weight ionomers and (2) single side chain fragments of three bis(sulfonyl imide)- based fragments with multiple and distinct acid groups per side chain having structural and chemical differences mediating protogenic group separation (side chains: –O(CF2)4SO2(NH)- SO2C6H4SO3H) with the sulfonic acid group located in either the meta or the ortho position on the phenyl ring and –O(CF2)4SO2(NH)SO2(CF2)3SO3H). Fully optimized structures of these fragments with and without the addition of water molecules at the B3LYP/6-311G** level revealed that both side chain connectivity and protogenic group separation, along with local hydration, are key contributors to proton dissociation and the energetics of proton transfer in these materials. Specifically, cooperative interaction between protogenic groups through hydrogen bonding and electron withdrawing –CF2– groups are critical for first proton dissociation and the state of the dissociated proton at low levels of hydration. However, the close proximity of protogenic groups in the ortho bis acid precluded second proton dissociation at low hydration as the relatively fixed protogenic group separation promoted interactions between water molecules, while the labile side chains in the PFSA ionomers allowed for greater freedom in the hydrogen bond network formed. Potential energy profiles for proton transfer were determined at the B3LYP/6-31G** level. The energetic penalty associated with proton transfer was found to be strongly dependent on the surrounding hydrogen bond network and the state of the dissociated proton(s), as well as, the separation between protogenic groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haile, S. M., Acta Mater. 51, 59816000 (2003).CrossRefGoogle Scholar
2. Ise, M., Kreuer, K. D. and Maier, J., Solid State Ion. 125, 213223 (1999).CrossRefGoogle Scholar
3. Kreuer, K. D., ChemPhysChem 3, 771775 (2002).3.0.CO;2-Y>CrossRefGoogle Scholar
4. Kreuer, K. D., Paddison, S. J., Spohr, E. and Schuster, M., Chem. Rev. 104, 46374678 (2004).CrossRefGoogle Scholar
5. Ezzell, B. R., Carl, W. P. and Mod, W. A., U.S. Patent No. U.S. Patent 4,358,412 (November 9 1982).Google Scholar
6. Hamrock, S. J. and Yandrasits, M. A., Polym. Rev. 46, 219244 (2006).Google Scholar
7. Sumner, J. J., Creager, S. E., Ma, J. J. and DesMarteau, D. D., J. Electrochem. Soc. 145, 107110 (1998).CrossRefGoogle Scholar
8. Creager, S. E., Sumner, J. J., Bailey, R. D., Ma, J. J., Pennington, W. T. and DesMarteau, D. D., Electrochem. and Solid St. Let. 2, 434436 (1999).CrossRefGoogle Scholar
9. Petersen, M. K., Wang, F., Blake, N. P., Metiu, H. and Voth, G. A., J. Phys. Chem. B 109, 37273730 (2005).CrossRefGoogle Scholar
10. Petersen, M. K. and Voth, G. A., J. Phys. Chem. B 110, 1859418600 (2006).CrossRefGoogle Scholar
11. Petersen, M. K., Hatt, A. J. and Voth, G. A., J. Phys. Chem. B 112, 77547761 (2008).CrossRefGoogle Scholar
12. Eikerling, M., Paddison, S. J., Pratt, L. R. and Zawodzinski, T. A., Chem. Phys. Lett. 368, 108114 (2003).CrossRefGoogle Scholar
13. Choe, Y. K., Tsuchida, E., Ikeshoji, T., Yamakawa, S. and Hyodo, S., Phys. Chem. Chem. Phys. 11, 38923899 (2009).CrossRefGoogle Scholar
14. Hayes, R. L., Paddison, S. J. and Tuckerman, M. E., J. Phys. Chem. B 113, 1657416589 (2009).CrossRefGoogle Scholar
15. Hayes, R. L., Paddison, S. J. and Tuckerman, M. E., J. Phys. Chem. A 115, 61126124 (2011).CrossRefGoogle Scholar
16. Habenicht, B. F., Paddison, S. J. and Tuckerman, M. E., Phys. Chem. Chem. Phys. 12, 87288732 (2010).CrossRefGoogle Scholar
17. Habenicht, B. F., Paddison, S. J. and Tuckerman, M. E., J. Mat. Chem. 20, 63426351 (2010).CrossRefGoogle Scholar
18. Paddison, S. J., J. New Mat. Electrochem. Syst. 4, 197207 (2001).Google Scholar
19. Eikerling, M., Paddison, S. J. and Zawodzinski, T. A., J. New Mat. Electrochem. Syst. 5, 1523 (2002).Google Scholar
20. Paddison, S. J. and Elliott, J. A., J. Phys. Chem. A 109, 75837593 (2005).CrossRefGoogle Scholar
21. Paddison, S. J. and Elliott, J. A., Solid State Ion. 177, 23852390 (2006).CrossRefGoogle Scholar
22. Elliott, J. A. and Paddison, S. J., Phys. Chem. Chem. Phys. 9, 26022618 (2007).CrossRefGoogle Scholar
23. Paddison, S. J. and Elliott, J. A., Solid State Ion. 178, 561567 (2007).CrossRefGoogle Scholar
24. Sagarik, K., Phonyiem, M., Lao-Ngam, C. and Chaiwongwattana, S., Phys. Chem. Chem. Phys. 10, 20982112 (2008).CrossRefGoogle Scholar
25. Wang, C. and Paddison, S. J., Phys. Chem. Chem. Phys. 12, 970981 (2009).CrossRefGoogle Scholar
26. Clark, J. K. and Paddison, S. J., Solid State Ion., doi:10.1016/j.ssi.2011.1007.1011 (2011).Google Scholar
27. Wang, C., Clark, J. K., Kumar, M. and Paddison, S. J., Solid State Ion., doi: 10.1016/j.ssi.2011.1007.1002 (2011).Google Scholar
28. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., et al. ., (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
29. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et al. ., (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
30. Schlegel, H. B., J. Comput. Chem. 3, 214218 (1982).CrossRefGoogle Scholar
31. Harihara, P. C. and Pople, J. A., Theor. Chim. Acta 28, 213222 (1973).CrossRefGoogle Scholar
32. Becke, A. D., J. Chem. Phys. 98, 56485652 (1993).CrossRefGoogle Scholar
33. Becke, A. D., J. Chem. Phys. 98, 13721377 (1993).CrossRefGoogle Scholar
34. McLean, A. D. and Chandler, G. S., J. Chem. Phys. 72, 56395648 (1980).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydration and Proton Transfer in 3M™ PEM Ionomers: An Ab Initio Study
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hydration and Proton Transfer in 3M™ PEM Ionomers: An Ab Initio Study
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hydration and Proton Transfer in 3M™ PEM Ionomers: An Ab Initio Study
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *