Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T18:55:03.314Z Has data issue: false hasContentIssue false

Hybrid Nanocomposites Based on Metal Oxides and Polysiloxanes with Controlled Morphology

Published online by Cambridge University Press:  17 March 2011

Sorin Ivanovici
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-165, Vienna, A1060, Austria
Christoph Rill
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-165, Vienna, A1060, Austria
Claudia Feldgitscher
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-165, Vienna, A1060, Austria
Guido Kickelbick
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-165, Vienna, A1060, Austria
Get access

Abstract

Hybrid materials based on polysiloxanes and metal oxides (SiO2, TiO2, ZrO2) were prepared by hydrosilation of allyl acetoacetate (AAA) modified metal alkoxides (M(OR)4; M = Ti, Zr; R = ethyl, isopropyl) or vinyl triethoxysilane with poly(dimethylsiloxane-co-hydrosiloxane) (PDMS-co-PMHS). The obtained compounds acted as single-source precursors in the sol-gel process. Various spectroscopic methods showed the complete functionalization of the polysiloxane chains with the complexes. When alcohols were used as solvents in the sol-gel process, hybrid nanoparticles were obtained, as observed by dynamic light scattering (DLS) measurements, transmission electron microscopy (TEM), and spectroscopic methods such as NMR and FT-IR.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abe, Y. and Gunji, T., Prog. Polym. Sci, 29, 149 (2004).Google Scholar
2. Mark, J. E., Acc. Chem. Res., 37, 946 (2004).Google Scholar
3. Rozga-Wijas, K., Chojnowski, J., Fortuniak, W., Scibiorek, M., Michalska, Z., and Rogalski, L., Journal of Materials Chemistry, 13, 2301 (2003).Google Scholar
4. Julian, B., Gervais, C., Cordoncillo, E., Escribano, P., Babonneau, F., and Sanchez, C., Chem. Mat., 15, 3026 (2003).Google Scholar
5. Guermeur, C., Lambard, J., Gerard, J.-F., and Sanchez, C., J. Mater. Chem., 9, 769 (1999).Google Scholar
6. Huesing, N., Bauer, J., Kalss, G., Garnweitner, G., and Kickelbick, G., J. Sol-Gel. Sci. Techn, 26, 73 (2003).Google Scholar
7. Nakade, M., Ichihashi, K., and Ogawa, M., J. Porous Mater., 12, 79 (2005).Google Scholar
8. Sanchez, C., Julian, B., Belleville, P., and Popall, M., J. Mater. Chem., 15, 3559 (2005).Google Scholar
9. Sanchez, C. and Ribot, F., New J. Chem., 18, 1007 (1994).Google Scholar
10. Schubert, U., J. Mater. Chem., 15, 3701 (2005).Google Scholar
11. Sanchez, C., Lebeau, B., Ribot, F., and In, M., J. Sol-Gel. Sci. Techn., 19, 31, (2000).Google Scholar
12. Cauro-Gamet, L. C., Hubert-Pfalzgraf, L. G., and Lecocq, S., Z. Anorg. Allg. Chem., 630, 2071 (2004).Google Scholar
13. Stoeber, W.; Fink, A.; Bohn, E.. J. Colloid Interface Sci.., 26, 62 (1968).Google Scholar
14. Hoebbel, D., Reinert, T., Schmidt, H., and Arpac, E., J. Sol-Gel. Sci. Techn, 10, 115126, (1997).Google Scholar
15. Lee, J. N., Park, C., and Whitesides, G. M., Anal. Chem., 75, 6544 (2003).Google Scholar