Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zmlw7 Total loading time: 0.272 Render date: 2021-06-14T20:02:04.025Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Hrteminvestigation of 90° Domain Configureuration and P-E Hysteresis Loop of Epitaxial PZT Multilayered Thin Films

Published online by Cambridge University Press:  11 February 2011

Takanori Kiguchi
Affiliation:
Center for Advanced Materials Analysis, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Naoki Wakiya
Affiliation:
Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Kazuo Shinozaki
Affiliation:
Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Nobuyasu Mizutani
Affiliation:
Center for Advanced Materials Analysis, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8550, Japan
Get access

Abstract

Multi-layered epitaxial Pb(Zrx,Ti1-x)O3 (PZT) films of x=0.2–0.5 were deposited on La0.5Sr0.5CoO3-x (LSCO)/ (001)STO and LSCO/CeO2/YSZ/(001)Si substrates with buffer layers. It was investigated how the 90° domain structure and the P-E hysteresis character depend on the difference of the thermal expansion coefficient by changing the Zr/Ti composition and the substrates, using HRTEM and XRD methods. XTEM analysis showed that usual lamella configuration of 90° domains of 8–30nm in width penetrated the columnar grain and the PZT layer in the PZT stacked film of Zr/Ti=20/80, 30/70, 40/60. On the other hand, the close-packed 90° domains of 4–5nm in width existed in a epitaxial columnar grain in the PZT50/50 stacked film. The P-E hysteresis loops of PZT20/80 stacked films deposited on STO and Si substrates show the remanent polarization of 2Pr=136μC/cm2, 2Pr=80μC/cm2, respectively. On the other hands, those of PZT50/50 stacked films deposited on STO and Si substrates show the polarization of 2Pr=125μC/cm2, 2Pr=36μC/cm2, respectively. Thus, the P-E hysteresis loop of PZT50/50 has remarkable difference of 2Pr between the substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Araujo, C.A., MacmMillan, L.D., Melnick, B.M., Cuchiaro, J.D., and Scott, J.F., Ferroelectrics, 104. 241 (1990)CrossRefGoogle Scholar
[2] Johnes, R.E., Zu'rcher, P., Chou, P., Taylor, D.J., Lii, Y.T., Jiang, B., Maniar, P.D., and Gillespie, S.J., Microelectron. Eng., 29, 3 (1995)CrossRefGoogle Scholar
[3] Suzuki, M., J. Ceram. Soc. Japan, 103, 1099 (1995)CrossRefGoogle Scholar
[4] Ganpule, C.S., Nagarajan, V., Li, H., Ogale, A.S., Martinez, A.D., Ogale, S.B., Aggarwal, S.A., Williams, E., Wolf, P.De., and Ramesh, R., Integrated Ferroelectrics, 32, 199 (2001)CrossRefGoogle Scholar
[5] Emelyanov, A.Yu. and Pertsev, N.A., Iintegrated Ferroelectrics, 32, 343 (2001)CrossRefGoogle Scholar
[6] Speck, J.S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys, 76, 477 (1994)CrossRefGoogle Scholar
[7] Alpay, S.P., Nagarajan, V., Vendersky, L.A., Vaudin, M.D., Aggarwal, S., Ramesh, R., and Roytburd, A.L., Appl. Phys., 85, 3271 (1999)CrossRefGoogle Scholar
[8] Foster, C.M., Li, Z., Buckett, M., Miller, D., Baldo, P.M., Rehn, L.E., Bai, G.R., Guo, D., You, H., and Merkel, K.L., J. Appl. Phys., 78, 2607 (1995)CrossRefGoogle Scholar
[9] Theis, C.D. and Schlom, D.G., J. Mater. Sci, 12, 1297 (1997)Google Scholar
[10] Novojilov, M.A., Kaul, A.R., Gorbrnoko, O.Y., Wahl, G., and Krause, U., Integrated Ferroelectrics, 33, 79 (2001)CrossRefGoogle Scholar
[11] Tuttle, B.A., Voigt, J.A., Goodnow., D.C., Lamppa, D.L., Headley, T.J., Eatough, M.O., Zenner, G., Nasby, R.D., and Rodgers, S.M., J. Am. Ceram. Soc., 76, 1537–44 (1993)CrossRefGoogle Scholar
[12] Sagalowicz, L., Pmuralt, , Hiboux, S., Maeder, T., Brooks, K., Kighelman, Z. and Setter, N., Mat. Res. Soc. Symp. Proc 596, Pittsburgh, PA, 265 (2000)Google Scholar
[13] Kim, J.H., Kim, Y., Chen, A.T‥, and Lange, F.F., J. Mater. Res‥, 16, 1739 (2001)CrossRefGoogle Scholar
[14] Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Glichrist, H., and Keramidas, V.G., Appl. Phys. Lett., 63, 27 (1993)CrossRefGoogle Scholar
[15] Kim, K.Y., Hwang, H.I., Lee, J.Y., and Choo, W.K., Mat. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 197 (1992)Google Scholar
[16] Ghonge, S.G., Goo, E., Ramesh, R., Sands, T. and Keramidas, V.G., Appl. Phys. Lett., 63, 1628 (1993)CrossRefGoogle Scholar
[17] Twai, P., Zheleva, T., and Narajayan, J., Appl. Phys. Lett., 63, 30 (1993)Google Scholar
[18] Lin, C.H., Yen, B.M., Kuo, H.C., Chen, H., Wu, T.B., and Stillman, G.E., J. Mater. Res., 15, 115 (2000)CrossRefGoogle Scholar
[19] Lee, K.S., Kang, Y.M., and Baik, S., J. Mater Res, 14, 132 (1999)CrossRefGoogle Scholar
[20] Roytburd, A.L. and Yu, Y., Ferroelectrics, 144, 137 (1993)CrossRefGoogle Scholar
[21] Alpay, S.P. and Roytburd, A.L., Mat. Res. Soc. Symp. Proc. 474 Pittsburgh, PA, 407 (1997)Google Scholar
[22] Romanov, A.E., Pompe, W., and Speck, J.S., J. Appl. Phys., 79, 4037 (1996)CrossRefGoogle Scholar
[23] Speck, J.S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys, 76, 466 (1994)CrossRefGoogle Scholar
[24] Pertsev, N.A. and Zembilgotov, A.G., J. Appl. Phys., 80, 6401 (1996)CrossRefGoogle Scholar
[25] Pellet, C., Thin Solid Films, 175, 23 (1989)CrossRefGoogle Scholar
[26] Bardal, A., Matthee, Th., Wecker, J., and Samwer, K., J. Appl. Phys. 75, 2902 (1994)CrossRefGoogle Scholar
[27] Hirai, T., Teramoto, K., Koike, H., Nagashima, K., and Tarui, Y., Jpn. J. Appl. Phys. 36, 5253 (1997)CrossRefGoogle Scholar
[28] Horita, S., Watanabe, M., and Masuda, A., Mater. Sci. Eng‥ B54, 79 (1998)CrossRefGoogle Scholar
[29] Matthee, T., Wecker, J., Behner, H., Friedl, g., Eibl, O., and Samwer, K., Appl. Phys. Lett., 61, 1240 (1992)CrossRefGoogle Scholar
[30] Baadal, A., Mzwerger, , Eibl, O., Wecker, J., and Metthee, T., Appl. Phys. Lett., 61, 1243 (1992)Google Scholar
[31] Bardal, A., Eibl, O., Matthee, T., Friedl, G., and Wecker, J., J. Mater. Res., 8, 2112 (1993)CrossRefGoogle Scholar
[32] Kang, Y.M. and Baik, S., J. Appl. Phys., 82, 2532 (1997)CrossRefGoogle Scholar
[33] Kwak, B.S., Eibl, A., Budai, J.D., Chrisholm, M.F., Boatner, L.A., and Wilkens, B.J., Phys. Rev., B49, 14865 (1994)CrossRefGoogle Scholar
[34] Elemkin, V.V., Smotrakov, V. G., and Fesenko, E.G., Ferroelectrics, 110 137, (1990)Google Scholar
[35] Keijeser, M., Leeuw, D.M., Veldhoven, P.J., De Veirmean, A.E.M., Neerinck, D.G., and Dormans, G.J.M., Thin Solid Films, 266, 157 (1995)CrossRefGoogle Scholar
[36] Stemer, S., Streiffer, S.K., Hsu, W-Y., Ernst, F., Raj, R., and Ruhle, M., J. Mater. Res, 10, 791 (1995)CrossRefGoogle Scholar
[37] Foeth, M., Sfera, A., Stadelmann, P. and Buffat, P.-A., Journal of Electron Microscope, 48, 717 (1999)CrossRefGoogle Scholar
[38] Huan, M.J., Furman, E., Jang, S.J. and Cross, L.E., Ferroelectrics, 99, 63 (1989)CrossRefGoogle Scholar
[39] Ramesh, R., Extended abstract of IUMRS-ICEM2002, 636 (2002)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hrteminvestigation of 90° Domain Configureuration and P-E Hysteresis Loop of Epitaxial PZT Multilayered Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hrteminvestigation of 90° Domain Configureuration and P-E Hysteresis Loop of Epitaxial PZT Multilayered Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hrteminvestigation of 90° Domain Configureuration and P-E Hysteresis Loop of Epitaxial PZT Multilayered Thin Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *