Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T14:32:52.888Z Has data issue: false hasContentIssue false

High-Throughput Screening of Thermoelectric Materials; Application of Thermal Probe Method to Composition-Spread Samples

Published online by Cambridge University Press:  01 February 2011

Atsushi Yamamoto
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, JAPAN
Dmitry Kukuruznyak
Nanomaterials Laboratory, National Institute for Materials Science (NIMS), Tsukuba, JAPAN
Parhat Ahmet
Nanomaterials Laboratory, National Institute for Materials Science (NIMS), Tsukuba, JAPAN
Toyohiro Chikyow
Nanomaterials Laboratory, National Institute for Materials Science (NIMS), Tsukuba, JAPAN
Fumio S. Ohuchi
Department of Materials Science and Engineering, University of Washington, Seattle, WA
Get access


In this paper, we demonstrate the use of thermal probe method that is capable of mapping Seebeck coefficient, thermal conductivity and contact resistance on a micrometer scale. We show the successful screening example on pseudo binary (Bi1−xSbx)2Te3 (0.5<x<1) bulk composition-spread sample prepared by conventional powder metallurgy process. Another demonstration is a novel attempt to combine the combinatorial PLD and the thermal probe method. A pseudo ternary diagram of nickel-copper-manganese oxides fabricated on Nb doped STO substrate was used for the screening. The mapping of electrical resistance over the ternary diagram yields a lot of information, which is essential for materials researches on complex, multi-composition systems.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Sales, B.C., Mandrus, D., Williams, R.K., Science, 272, (1996) p. 1325.Google Scholar
2. Terasaki, I., Sasago, Y., Uchinokura, K., Phys. Rev. B, 56 (1997) R12685.Google Scholar
3. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., Sodeoka, S., Jpn. J. Appl. Phys. 2, Lett, 39 (2000) L1127.Google Scholar
4. Binnig, G., Rohrer, H., Gerber, Ch. nad Weibel, E., Phys. Rev. Lett. 49, 57 (1982).Google Scholar
5. Williams, C.C. and Wickramasinghe, H.K., Appl. Phys. Lett. 49, 1587(1986).Google Scholar
6. Nonnenmacher, M. and Wickramasinghe, H.K., Appl. Phys. Lett. 61, 168(1992).Google Scholar
7. Williams, C.C. and Wickramasinghe, H.K., Nature. 344, 3177(1990).Google Scholar
8. Süβmann, H., Bohm, M., Reinshaus, P., Proc.12th Int. Conf. on Thermoelectrics, Yokohama 86(1993).Google Scholar
9. Ivanova, L.D., Süβmann, H., Reinhaus, P., Dietrich, Th., Proc. 14th Int. Conf. on Thermoelectrics, St. Petersburg (1995) p. 13.Google Scholar
10. Yamamoto, A. and Ohta, T., Mater. Res. Soc. Proc. 478, Pittsburgh, PA, (1997) p. 115.Google Scholar
11. Yamamoto, A., Lee, C.H., Takazawa, H., Ohta, T., Ueno, K., Aizawa, T. and Fukagawa, H., Proc. FGM2000, (2001) p. 119.Google Scholar
12. Yamamoto, A., Takazawa, H., Lee, C.H., and Ohta, T., Proc. FGM2001, (2002) p. 7.Google Scholar
13. Yim, W.M. and Rosi, F.D., Solid-State Electronics, 15, (1972) p. 1121.Google Scholar
14. Testardi, L.R., Bierly, J.N. Jr., Donahoe, F.J., J. Phys. Chem. Solids, 23, (1962) p. 1209.Google Scholar
15. Stray, Z., Horak, J., Stordeur, M. and Stölzer, M., J. Phys. Chem. Solids, 49, (1988) p. 29.Google Scholar
16. Kukuruznyak, D.A., Han, S.W., Lee, M-Hwan, Omland, K.A., Gregg, M C., Stern, E.A., and Ohuchi, F.S., J. Vac. Thenocnol, A 19, (2001) p. 1923 Google Scholar
17. Ohashi, S., Lippmaa, M., Nakagawa, N., Nagasawa, H., Koinuma, H., and Kawasaki, M., Rev. Sci. Instrum. 70, (1999) p. 178.Google Scholar
18. Yoo, Y.-Z., Fukumura, T., Jin, Zhengwu, Hasegawa, K., Kawasaki, M., Ahmet, P., Chikyow, T., Koinuma, H., J. Appl. Phys. 90, (2002) p. 4246 Google Scholar
19. Kukuruznyak, D.A., Bulkley, S.A., Omland, K.A., Ohuchi, F.S., and Gregg, M.C., Thin Solid Films, 385, (2001) p. 89.Google Scholar
20. Okuda, T., Nakanishi, K., Miyasaka, S. and Tokura, Y., Phys. Rev. B, 63,(2001) p. 113104.Google Scholar
21. Vakiv, M., Shpotyuk, O., Mrooz, O., Hadzaman, I., J. Europ. Ceram. Soc., 21, (2001) p. 1783.Google Scholar