Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-rn2sj Total loading time: 0.197 Render date: 2022-08-07T16:44:49.855Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

High-Temperature Operation of Pentacene Field-Effect Transistors with Polyimide Gate Insulators

Published online by Cambridge University Press:  01 February 2011

Tsuyoshi Sekitani
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Shingo Iba
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Yusaku Kato
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Yoshiaki Noguchi
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Takao Someya
Affiliation:
Quantum-Phase Electronics Center, School of Engineering, the University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Takayasu Sakurai
Affiliation:
Center for Collaborative Research, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Get access

Abstract

We have fabricated pentacene field-effect transistors (FETs) on polyimide-sheet films with polyimide gate dielectric layers and parylene encapsulation layer, and investigated the high-temperature performance. It is found that the mobility of encapsulated FETs is enhanced from 0.5 to 0.8 cm2/Vs when the device is heated from room temperature to 160°C under light-shielding nitrogen environment. Furthermore, after the removal of annealing temperatures up to 160°C, the transistor characteristic of mobility and on/off current ratio show no significant changes, demonstration the excellent thermal stability of the present organic FETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rogers, J. A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J., and Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).CrossRefGoogle Scholar
2 Sheraw, C. D., Zhou, L., Huang, J. R., Gundlach, D. J., Jackson, T. N., Kane, M. G., Hill, I. G., Hammond, M. S., Campi, J., Greening, B. K., Francl, J., and West, J., Appl. Phys. Lett. 80, 1088 (2002).CrossRefGoogle Scholar
3 Baude, P. F., Ender, D. A., Haase, M. A., Kelley, T. W., Muyres, D. V., and Theiss, S. D., Appl. Phys. Lett. 82, 3964 (2003).CrossRefGoogle Scholar
4 Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., and Leeuw, D. M. de, Appl. Phys. Lett. 73, 108110 (1998).CrossRefGoogle Scholar
5 Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).CrossRefGoogle Scholar
6 Kawaguchi, H., Someya, T., Sekitani, T., and Sakurai, T., IEEE J. Solid-State Circuits. 40, 177 (2005).CrossRefGoogle Scholar
7 Kang, S. J., Noh, M., Park, D. S., Kim, H. J., Whang, C. N., C. –H. Chang, J. Appl. Phys. 95, 2293 (2004).CrossRefGoogle Scholar
8 Kato, Y., Iba, S., Teramoto, R., Sekitani, T., Someya, T.. Kawaguchi, H., and Sakurai, T., Appl. Phys. Lett. 84, 3789 (2004).CrossRefGoogle Scholar
9 Sekitani, T., Kato, Y., Iba, S., Shinaoka, H., Someya, T., Sakurai, T., and Takagi, S., Appl. Phys. Lett. 86, 073511 (2005).CrossRefGoogle Scholar
10 Sekitani, T., Iba, S., Kato, Y., and Someya, T., Appl. Phys. Lett. 85, 3902 (2004).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-Temperature Operation of Pentacene Field-Effect Transistors with Polyimide Gate Insulators
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High-Temperature Operation of Pentacene Field-Effect Transistors with Polyimide Gate Insulators
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High-Temperature Operation of Pentacene Field-Effect Transistors with Polyimide Gate Insulators
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *