Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T13:15:44.437Z Has data issue: false hasContentIssue false

High-Power Low-Threshold Optically Pumped Type-ll Quantum-Well Lasers

Published online by Cambridge University Press:  10 February 2011

Chih-Hsiang Lin*
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
S. J. Murry
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
Rui Q. Yang
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
S. S. Pei
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
H. Q. Le
Affiliation:
MIT Lincoln Laboratory, Lexington, Massachusetts 02173
Chi Yan
Affiliation:
Rocketdyne Technical Services, Boeing Defense & Space Group, Kirtland AFB, NM 87117-5776
D. M. Gianardi Jr.
Affiliation:
Rocketdyne Technical Services, Boeing Defense & Space Group, Kirtland AFB, NM 87117-5776
D. L. McDaniel Jr.
Affiliation:
Semiconductor Laser Branch, Air Force Phillips Lab., Kirtland AFB, NM 87117-5776
M. Falcon
Affiliation:
Semiconductor Laser Branch, Air Force Phillips Lab., Kirtland AFB, NM 87117-5776
*
* also with Applied Optoelectronics Inc., Houston, Texas 77081
Get access

Abstract

Stimulated emission in InAs/InGaSb/InAs/AlSb type-II quantum-well (QW) lasers was observed up to room temperature at 4.5 μm, optically pumped by a pulsed 2-μm Tm:YAG laser. The absorbed threshold peak pump intensity was only 1.1 kW/cm2 at 300 K, with a characteristic temperature T0 of 61.6 K for temperatures up to 300 K. We will also study the effects of internal loss on the efficiency and output power for type-II QW lasers via optical pumping. Using a 0.98-μm InGaAs linear diode array, the devices exhibited an internal quantum efficiency of 67% at temperatures up to 190 K, and was capable of < 1. 1-W peak output power per facet in 6-μs pulses at 85 K. The internal loss of the devices exhibited an increase from 18 cm−1 near 70 K to ∼ 60–100 cm−1 near 180 K, which was possibly due to inter-valence band free carrier absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, H. K., Turner, G. W., and Eglash, S. J., IEEE Photon. Technol. Lett. 6, p. 7 (1994).Google Scholar
2. Lee, H., York, P. K., Menna, R. J., Martinelli, R. U., Garbuzov, D. Z., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 67, p. 1942 (1995).Google Scholar
3. Choi, H. K., Turner, G. W., Manfra, M. J., and Connors, M. K., Appl. Phys. Lett. 68, p. 2936 (1996).Google Scholar
4. Wu, D., Kaas, E., Diaz, J., Lane, B., Rybaltowski, A., Yi, H. J., and Razeghi, M., IEEE Photon. Technol. Lett. 9, p. 173 (1997).Google Scholar
5. Le, H. Q., Turner, G. W., Ochoa, J. R., and Sanchez, A., Electron. Left. 30, p. 1944 (1994).Google Scholar
6. Lin, C.-H., Murry, S. J., Zhang, D., Chang, P. C., Zhou, Y., and Pei, S. S., Malin, J. I., Felix, C. L., Meyer, J. R., Hoffmnan, C. A., and Pinto, J. F., J. Crystal Growth 175, p. 955 (1997).Google Scholar
7. Lin, C.-H., Chang, P. C., Murry, S. J., Zhang, D., Yang, R. Q., and Pei, S. S., Malin, J. I., Meyer, J. R., Felix, C. L., Lindle, J. R., Goldberg, L., Hoffman, C. A., and Bartoli, E. J., J. Electron. Materials 26, p. 440 (1997).Google Scholar
8. Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett. 69, p. 465 (1997).Google Scholar
9. Hasenberg, T. C., Miles, R. H., Kost, A. R., and West, L., IEEE J. Quantum Electron. 33, p. 1403 (1997).Google Scholar
10. Bewley, W. W., Aifer, E. H., Felix, C. L., Vurgaftman, I., and Meyer, J. R., Lin, C. H., Murry, S. J., Zhang, D., and Pei, S. S., Appl. Phys. Lett., in press.Google Scholar
11. Yang, R. Q., Yang, B. H., Zhang, D., Lin, C. H., Murry, S. J., Wu, H., and Pei, S. S., Appl. Phys. Lett. 71, p. 2409 (1997).10.1063/1.120076Google Scholar
12. Felix, C. L., Bewley, W. W., Vurgaftman, I., and Meyer, J. R., Zhang, D., Lin, C. H., Yang, R. Q., and Pei, S. S., IEEE Photon. Technol. Lett. 9, p. 1433 (1997).Google Scholar
13. Baranov, A. N., Bertru, N., Curninal, Y., Boissier, G., Alibert, C., and Joullie, A., Appl. Phys. Lett. 71, p. 735 (1997).Google Scholar
14. Sirtori, C., Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., IEEE Photon. Technol. Lett. 9, p. 294 (1997).Google Scholar
15. Sirtori, C., Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., IEEE J. Quantum Electron. 33, p. 89 (1997).Google Scholar
16. Grein, C. H., Young, P. M., and Ehrenreich, H., J. Appl. Phys. 76, p. 1940 (1994).Google Scholar
17. Ram-Mohan, L. R. and Meyer, J. R., J. Nonlinear Opt. Phys. Mat. 4, p. 191 (1995).Google Scholar
18. Youngdale, E. R., Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Grein, C. H., Young, P. M., Ehrenreich, H., Moles, R. H., and Chow, D. H., Appl. Phys. Lett. 64, p. 3160 (1994).Google Scholar
19. Le, H. Q., and Turner, G. W., Lin, C.-H., Murry, S. J., Yang, R. Q., and Pei, S. S., submitted to IEEE J. Quantum Electron.Google Scholar