Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-fstz4 Total loading time: 0.382 Render date: 2021-05-08T08:53:02.877Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

High-Power Low-Threshold Optically Pumped Type-ll Quantum-Well Lasers

Published online by Cambridge University Press:  10 February 2011

Chih-Hsiang Lin
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
S. J. Murry
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
Rui Q. Yang
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
S. S. Pei
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Texas 77204-5507
H. Q. Le
Affiliation:
MIT Lincoln Laboratory, Lexington, Massachusetts 02173
Chi Yan
Affiliation:
Rocketdyne Technical Services, Boeing Defense & Space Group, Kirtland AFB, NM 87117-5776
D. M. Gianardi Jr.
Affiliation:
Rocketdyne Technical Services, Boeing Defense & Space Group, Kirtland AFB, NM 87117-5776
D. L. McDaniel Jr.
Affiliation:
Semiconductor Laser Branch, Air Force Phillips Lab., Kirtland AFB, NM 87117-5776
M. Falcon
Affiliation:
Semiconductor Laser Branch, Air Force Phillips Lab., Kirtland AFB, NM 87117-5776
Get access

Abstract

Stimulated emission in InAs/InGaSb/InAs/AlSb type-II quantum-well (QW) lasers was observed up to room temperature at 4.5 μm, optically pumped by a pulsed 2-μm Tm:YAG laser. The absorbed threshold peak pump intensity was only 1.1 kW/cm2 at 300 K, with a characteristic temperature T0 of 61.6 K for temperatures up to 300 K. We will also study the effects of internal loss on the efficiency and output power for type-II QW lasers via optical pumping. Using a 0.98-μm InGaAs linear diode array, the devices exhibited an internal quantum efficiency of 67% at temperatures up to 190 K, and was capable of < 1. 1-W peak output power per facet in 6-μs pulses at 85 K. The internal loss of the devices exhibited an increase from 18 cm−1 near 70 K to ∼ 60–100 cm−1 near 180 K, which was possibly due to inter-valence band free carrier absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Choi, H. K., Turner, G. W., and Eglash, S. J., IEEE Photon. Technol. Lett. 6, p. 7 (1994).CrossRefGoogle Scholar
2. Lee, H., York, P. K., Menna, R. J., Martinelli, R. U., Garbuzov, D. Z., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 67, p. 1942 (1995).CrossRefGoogle Scholar
3. Choi, H. K., Turner, G. W., Manfra, M. J., and Connors, M. K., Appl. Phys. Lett. 68, p. 2936 (1996).CrossRefGoogle Scholar
4. Wu, D., Kaas, E., Diaz, J., Lane, B., Rybaltowski, A., Yi, H. J., and Razeghi, M., IEEE Photon. Technol. Lett. 9, p. 173 (1997).CrossRefGoogle Scholar
5. Le, H. Q., Turner, G. W., Ochoa, J. R., and Sanchez, A., Electron. Left. 30, p. 1944 (1994).CrossRefGoogle Scholar
6. Lin, C.-H., Murry, S. J., Zhang, D., Chang, P. C., Zhou, Y., and Pei, S. S., Malin, J. I., Felix, C. L., Meyer, J. R., Hoffmnan, C. A., and Pinto, J. F., J. Crystal Growth 175, p. 955 (1997).CrossRefGoogle Scholar
7. Lin, C.-H., Chang, P. C., Murry, S. J., Zhang, D., Yang, R. Q., and Pei, S. S., Malin, J. I., Meyer, J. R., Felix, C. L., Lindle, J. R., Goldberg, L., Hoffman, C. A., and Bartoli, E. J., J. Electron. Materials 26, p. 440 (1997).CrossRefGoogle Scholar
8. Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett. 69, p. 465 (1997).CrossRefGoogle Scholar
9. Hasenberg, T. C., Miles, R. H., Kost, A. R., and West, L., IEEE J. Quantum Electron. 33, p. 1403 (1997).CrossRefGoogle Scholar
10. Bewley, W. W., Aifer, E. H., Felix, C. L., Vurgaftman, I., and Meyer, J. R., Lin, C. H., Murry, S. J., Zhang, D., and Pei, S. S., Appl. Phys. Lett., in press.Google Scholar
11. Yang, R. Q., Yang, B. H., Zhang, D., Lin, C. H., Murry, S. J., Wu, H., and Pei, S. S., Appl. Phys. Lett. 71, p. 2409 (1997).10.1063/1.120076CrossRefGoogle Scholar
12. Felix, C. L., Bewley, W. W., Vurgaftman, I., and Meyer, J. R., Zhang, D., Lin, C. H., Yang, R. Q., and Pei, S. S., IEEE Photon. Technol. Lett. 9, p. 1433 (1997).CrossRefGoogle Scholar
13. Baranov, A. N., Bertru, N., Curninal, Y., Boissier, G., Alibert, C., and Joullie, A., Appl. Phys. Lett. 71, p. 735 (1997).CrossRefGoogle Scholar
14. Sirtori, C., Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., IEEE Photon. Technol. Lett. 9, p. 294 (1997).CrossRefGoogle Scholar
15. Sirtori, C., Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., IEEE J. Quantum Electron. 33, p. 89 (1997).CrossRefGoogle Scholar
16. Grein, C. H., Young, P. M., and Ehrenreich, H., J. Appl. Phys. 76, p. 1940 (1994).CrossRefGoogle Scholar
17. Ram-Mohan, L. R. and Meyer, J. R., J. Nonlinear Opt. Phys. Mat. 4, p. 191 (1995).CrossRefGoogle Scholar
18. Youngdale, E. R., Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Grein, C. H., Young, P. M., Ehrenreich, H., Moles, R. H., and Chow, D. H., Appl. Phys. Lett. 64, p. 3160 (1994).CrossRefGoogle Scholar
19. Le, H. Q., and Turner, G. W., Lin, C.-H., Murry, S. J., Yang, R. Q., and Pei, S. S., submitted to IEEE J. Quantum Electron.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-Power Low-Threshold Optically Pumped Type-ll Quantum-Well Lasers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High-Power Low-Threshold Optically Pumped Type-ll Quantum-Well Lasers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High-Power Low-Threshold Optically Pumped Type-ll Quantum-Well Lasers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *