Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-cnwzk Total loading time: 0.156 Render date: 2021-07-28T15:21:47.689Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High-Performance MIM Capacitors based on TiO2/ZrO2/TiO2 and AlO-doped TiO2/ZrO2/TiO2 Dielectric Stacks for DRAM Applications

Published online by Cambridge University Press:  27 June 2013

Revathy Padmanabhan
Affiliation:
Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
Navakanta Bhat
Affiliation:
Dept. of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India. Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
S. Mohan
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.
Y. Morozumi
Affiliation:
Tokyo Electron Tohoku Limited, Yamanashi, Japan.
Sanjeev Kaushal
Affiliation:
Tokyo Electron Santa Clara Labs, Santa Clara, CA, United States.
Get access

Abstract

Metal-insulator-metal (MIM) capacitors for DRAM applications have been realized using TiO2/ZrO2/TiO2 (TZT) and AlO-doped TZT (TZAZT and TZAZAZT) dielectric stacks. High capacitance densities of about 46.6 fF/μm2 (for TZT stacks), 46.2 fF/μm2 (for TZAZT stacks), and 46.8 fF/μm2 (for TZAZAZT stacks) have been achieved. Low leakage current densities of about 4.9×10−8 A/cm2, 5.5×10−9 A/cm2, and 9.7×10−9 A/cm2 (at -1 V) have been obtained for TZT, TZAZT, and TZAZAZT stacks, respectively. We analyze the leakage current mechanisms at different electric field regimes, and compute the barrier heights. The effects of constant current stress and constant voltage stress on the device characteristics are studied, and excellent device reliability is demonstrated. We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RF and Analog/Mixed-Signal Technologies for Wireless Communications, International Technology Roadmap for Semiconductors (Semiconductor Industry Association 2009 ed.).
Hourdakis, E., and Nassiopoulou, A. G., IEEE Trans. Electron Devices, 57, 2679, (2010).CrossRef
Lukosius, M., Baristiran Kaynak, C., Rushworth, S., and Wenger, Ch., J. Electrochem. Soc., 158, G119, (2011).CrossRef
Tsai, C. Y., Chiang, K. C., Lin, S. H., Hsu, K. C., Chi, C. C., and Chin, A., IEEE Electron Device Lett., 31, 749, (2010).CrossRef
Thomas, M., Farcy, A., Perrot, C., Deloffre, E., Gros-Jean, M., Benoit, D., Richard, C., Caubet, P., Guillaumet, S., Pantel, R., Cordeau, M., Piquet, J., Bermond, C., Flechet, B., Chenevier, B., and Torres, J., VLSI Symp. Tech. Dig., 2007, 5859.
Cheng, C. H., Lin, S. H., Jhou, K. Y., Chen, W. J., Chou, C. P., Yeh, F. S., Hu, J., Hwang, M., Arikado, T., McAlister, S. P., and Chin, A., IEEE Electron Device Lett., 29, 845, (2008).CrossRef
Chiang, K. C., Cheng, C. H., Jhou, K. Y., Pan, H. C., Hsiao, C. N., Chou, C. P., McAlister, S. P., Chin, A., and Hwang, H. L., IEEE Electron Device Lett., 28, 694, (2007).CrossRef
Wu, Y. -H., Kao, C. -K., Chen, B. -Y., Lin, Y. -S., Li, M. -Y., and Wu, H. -C., Appl. Phys. Lett., 93, 033511, (2008).CrossRef
Lin, S. H., Chiang, K. C., Chin, A., and Yeh, F. S., IEEE Electron Device Lett., 30, 715, (2009).CrossRef
Wu, Y. -H., Lin, C. -C., Hu, Y. -C., Wu, M. -L., Wu, J. -R., and Chen, L. -L., IEEE Electron Device Lett., 32, 1107, (2011).CrossRef
Kahn, M., Vallee, C., Defay, E., Dubourdieu, C., Bonvalot, M., Blonkowski, S., Plaussu, J. -R., Garrec, P., Baron, T., Microelectron. Rel., 47, 773, (2007).CrossRef
Tsai, C. Y., Chiang, K. C., Lin, S. H., Hsu, K. C., Chi, C. C., and Chin, A., IEEE Electron Device Lett., 31, 749, (2010).CrossRef
Monaghan, S., Cherkaoui, K., O’Connor, É., Djara, V., Hurley, P. K., Oberbeck, L., Tois, E., Wilde, L., and Teichert, S., IEEE Electron Device Lett., 30, 219, (2009).CrossRef
Kim, J.-H., Ignatova, V., Kücher, P., Heitmann, J., Oberbeck, L., Schröder, U., Thin Solid Films, 516, 8333, (2008).CrossRef
Ding, S.-J., Hu, H., Zhu, C., Kim, S. J., Yu, X., Li, M.-F., Cho, B. J., Chan, D. S. H., Yu, M. B., Rustagi, S. C., Chin, A., and Kwong, D.-L., IEEE Trans. Electron Devices, 51, 886, (2004).CrossRef
Sedghi, N., Davey, W., Mitrovic, I. Z. and Hall, S, J. Vac. Sci. Technol. B, 29, 01AB10, (2011).
Cheng, C.-H., Chiang, K.-C., Pan, H.-C., Hsiao, C.-N., Chou, C.-P., Mcalister, S. P., and Chin, A., Jpn. J. Appl. Phys., 46, 7300, (2007).CrossRef
Besset, C., Bruyere, S., Blonkowski, S., Cremer, S., and Vincent, E., Microelectron. Reliab., 43, 1237, (2003).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High-Performance MIM Capacitors based on TiO2/ZrO2/TiO2 and AlO-doped TiO2/ZrO2/TiO2 Dielectric Stacks for DRAM Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High-Performance MIM Capacitors based on TiO2/ZrO2/TiO2 and AlO-doped TiO2/ZrO2/TiO2 Dielectric Stacks for DRAM Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High-Performance MIM Capacitors based on TiO2/ZrO2/TiO2 and AlO-doped TiO2/ZrO2/TiO2 Dielectric Stacks for DRAM Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *