Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T09:01:20.117Z Has data issue: false hasContentIssue false

Highly Efficient OVPD-Processed Resonant-Cavity OLED Comprising a Semitransparent Ag layer

Published online by Cambridge University Press:  13 February 2012

M. Bösing
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
F. Lindla
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Brast
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
D. Bertram
Affiliation:
Philips Technologie GmbH, Philipsstr. 8, 52068 Aachen, Germany
D. Keiper
Affiliation:
AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath, Germany
M. Heuken
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath, Germany
H. Kalisch
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
A. Vescan
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
Get access

Abstract

The light out-coupling potential of introducing a semitransparent Ag layer between the anode and the organic layer stack of monochrome bottom-emitting organic light emitting diodes (OLED) is examined. Red and green phosphorescent as well as deep-blue fluorescent resonant-cavity OLED (RC-OLED) comprising a semitransparent Ag layer are processed by means of organic vapor phase deposition (OVPD). An enhancement of the luminous efficiency of up to 81% can be observed.

The impressive efficiency enhancement can be explained by a reduced formation of substrate modes in combination with a strong narrowing of the emission spectrum leading to an increased true luminous efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baldo, M. A. et al. ., Nature, 395, (1998)Google Scholar
2. Sun, Y. and Forrest, S. R., Appl. Phys. Lett., 91, 263503 (2007)Google Scholar
3. Chutinan, A. et al. ., Organic Electronics, 6 Issue 1 (2005) p.39 Google Scholar
4. Purcell, E.M. et al. ., Phys. Rev., 69, 37 (1946)Google Scholar
5. Jordan, H. et al. ., Appl. Phys. Lett. , 69, 14 (1996)Google Scholar
6. Meerheim, R. et al. ., Appl. Phys. Lett. 93, 043310 (2008)Google Scholar
7. Kim, H. K. et al. ., Organic Electronics, 11, 137145 (2010)Google Scholar
8. Material supplied by Merck OLED Materials Google Scholar
9. Lindla, F. et al. ., MRS Symp. Proc. 1154, 1154B05-07 (2009)Google Scholar
10. Lindla, F. et al. ., Appl. Phys. Lett. 95, 213305 (2009)Google Scholar