Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rq6d8 Total loading time: 0.193 Render date: 2021-09-24T03:46:15.178Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells

Published online by Cambridge University Press:  01 February 2011

Koeng Su Lim
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Joong Hwan Kwak
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seong Won Kwon
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seung Yeop Myong
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Get access

Abstract

We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. However, the source of the superior light-induced stability of the pc-Si:H multilayer absorbers compared to conventional amorphous silicon (a-Si:H) absorbers remains unclear. Photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy measured at room temperature produce strong evidence that nano-sized silicon grains embedded in regularly arranged highly H2-diluted sublayers suppress the photocreation of dangling bonds. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous siliconcarbon alloy (p-a-Si1-xCx:H) structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage, and the wide overlap of dark current - voltage (JD-V) and short-circuit current - open-circuit voltage (Jsc-Voc) characteristics prove that the double p-a-Si1-xCx:H layer structure successfully reduces recombination at the p/i interface. Thus, we achieved a highly stabilized efficiency of 9.0 % without any back reflector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1997).10.1063/1.89674CrossRefGoogle Scholar
2 Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R. and R.Collins, W., Appl. Phys. Lett. 73, 1526 (1998).10.1063/1.122194CrossRefGoogle Scholar
3 Yang, J., Lord, K. and Guha, S., Mater. Res. Soc. Symp. Proc. 609, A15.4 (2000).10.1557/PROC-609-A15.4CrossRefGoogle Scholar
4 Koch, C., Ito, M., Švrček, V., Schubert, M. B. and Werner, J. H., Mater. Res. Soc. Symp. Proc. 609, A15.6 (2000).10.1557/PROC-609-A15.6CrossRefGoogle Scholar
5 Ahn, J. Y., Jun, K. H., Konagai, M. and Lim, K. S., Appl. Phys. Lett. 82, 1718 (2003).10.1063/1.1561161CrossRefGoogle Scholar
6 Xu, Y., Liao, X., Kong, G., Zeng, X., Hu, Z., Diao, H. and Zhang, S., Technical Digest of The 14th International Photovoltaic Science and Engineering Conference, Bangkok, Thailand, p. 105 (2004).Google Scholar
7 Kočka, J., Stuchlík, J., Stuchlíková, Ha, Švrček, V., Fojtík, P., Mates, T., Luterová, K. and Fejfar, A., Appl. Phys. Lett. 79, 2540 (2001).10.1063/1.1410364CrossRefGoogle Scholar
8 Jun, K. H., Ouwens, J. D., Schropp, R. E. I., Lee, J. Y., Choi, J. H., Lee, H. S. and Lim, K. S., J. Appl. Phys. 88, 4881 (2000).10.1063/1.1311308CrossRefGoogle Scholar
9 Lim, K. S., Kwon, S. W. and Myong, S. Y., Technical Digest of The 12th International Photovoltaic Science and Engineering Conference, Jeju, Korea, p. 37 (2001).Google Scholar
10 Kwon, S. W., Ahn, J. Y., Myong, S. Y. and Lim, K. S., Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, p. 3015 (2001).Google Scholar
11 Myong, S. Y., Kwon, S. W., Konagai, M. and Lim, K. S., Sol. Energy Mater. Sol. Cells 85, 133 (2005).Google Scholar
12 Myong, S. Y., Lee, H. K., Yoon, E. and Lim, K. S., J. Non-Cryst. Solids 298, 131 (2002).10.1016/S0022-3093(02)00916-XCrossRefGoogle Scholar
13 Lee, H. K., Myong, S. Y., Lim, K. S. and Yoon, E., J. Non-Cryst. Solids 316, 297 (2003).10.1016/S0022-3093(02)01630-7CrossRefGoogle Scholar
14 Myong, S. Y., Kim, T. H., Kim, K. H., Ahn, B. T., S. Miyajima, Konagai, M. and Lim, K. S., Sol. Energy Mater. Sol. Cells 81, 485 (2004).10.1016/j.solmat.2003.12.002CrossRefGoogle Scholar
15 Myong, S. Y., Shevaleevskiy, O., Miyajima, S., Konagai, M. and Lim, K. S., J. Non-Cryst. Solids 351, 89 (2005).10.1016/j.jnoncrysol.2004.09.019CrossRefGoogle Scholar
16 Tang, S., Liu, X. and Bao, X., Appl. Phys. Lett. 66, 469 (1995).10.1063/1.114059CrossRefGoogle Scholar
17 Ito, M., Kondo, M. and Matsuda, A., Technical Digest of The 14th International Photovoltaic Science and Engineering Conference, Bangkok, Thailand, p. 381 (2004).Google Scholar
18 Mahan, A. H., Yang, J., Guha, S. and Williamson, D. L., Phys. Rev. B 61, 1677 (2000).10.1103/PhysRevB.61.1677CrossRefGoogle Scholar
19 Ambrosone, G., Coscia, U., Lettieri, S., Maddalena, P. and Minarini, C., Materials Science and Engineering B 101, 236 (2003).10.1016/S0921-5107(02)00670-0CrossRefGoogle Scholar
20 Itoh, T., Yamamoto, K., Ushikoshi, K., Nonomura, S. and Nitta, S., J. Non-Cryst. Solids 266, 201 (2000).10.1016/S0022-3093(99)00821-2CrossRefGoogle Scholar
21 Han, D., Wang, K., Owens, J. M., Gedvilas, L., Nelson, B., Habuchi, H. and Tanaka, M., J. Appl. Phys. 93, 3776 (2003).10.1063/1.1555680CrossRefGoogle Scholar
22 Myong, S. Y., Kim, S. S. and Lim, K. S., Thin Solid Films 455, 482 (2004).10.1016/j.tsf.2004.01.018CrossRefGoogle Scholar
23 Myong, S. Y., Kim, S. S. and Lim, K. S., Appl. Phys. Lett. 84, 5416 (2004).10.1063/1.1767601CrossRefGoogle Scholar
24 Myong, S. Y., Kim, S. S. and Lim, K. S., J. Appl. Phys. 95, 1525 (2004).10.1063/1.1639140CrossRefGoogle Scholar
25 Myong, S. Y. and Lim, K. S., Appl. Phys. Lett. 86, 033506 (2005).10.1063/1.1853492CrossRefGoogle Scholar
26 Arya, R. R., Catalano, A. and Oswald, R. S., Appl. Phys. Lett. 49, 1089 (1986).10.1063/1.97430CrossRefGoogle Scholar
27 Deng, J., Pearce, J. M., Koval, R. J., Vlahos, V., Collins, R. W. and Wronski, C. R., Appl. Phys. Lett. 82, 3023 (2003).10.1063/1.1571985CrossRefGoogle Scholar
28 Sakai, H., Yoshida, T., Fujikake, S., Hama, T. and Ichikawa, Y., J. Appl. Phys. 67, 3494 (1990).10.1063/1.345340CrossRefGoogle Scholar
29 Lips, K., Mater. Res. Soc. Symp. Proc. 377, 455 (1995).10.1557/PROC-377-455CrossRefGoogle Scholar
30 Pearce, J. M., Koval, R. J., Ferlauto, A. S., Collins, R. W., Wronski, C. R., Yang, J. and Guha, S., Appl. Phys. Lett. 77, 3093 (2000).10.1063/1.1323550CrossRefGoogle Scholar
31 Lubianiker, Y., Cohen, J. D., Jin, H. C. and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).10.1103/PhysRevB.60.4434CrossRefGoogle Scholar
32 Kamei, T., Stradins, P. and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).10.1063/1.123662CrossRefGoogle Scholar
33 Street, R. A., “Hydrogenated Amorphous Silicon”, ed. Cahn, R.W., Davis, E. A. and Ward, I. M. (Cambridge University Press, Cambridge, 1991).10.1017/CBO9780511525247CrossRefGoogle Scholar
34 Shimizu, T., Jpn. J. Appl. Phys. 43, 3257 (2004).10.1143/JJAP.43.3257CrossRefGoogle Scholar
35 Myong, S. Y. and Lim, K. S., Appl. Phys. Lett. 82, 3026 (2003)10.1063/1.1571651CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *