Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.227 Render date: 2021-06-13T12:39:30.066Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

High Temperature Mechanical Behavior of a Mo-Si-B Solid Solution Alloy

Published online by Cambridge University Press:  26 February 2011

Padam Jain
Affiliation:
padam_jain@brown.edu, Brown University, Division of Engineering, 182, Hope St., Providnce, RI, 02906, United States, 401 2258088
K. S. Kumar
Affiliation:
sharvan_kumar@brown.edu, Brown University, Division of Engineering, 182 Hope Street, Providence, RI, 02912, United States
Corresponding
Get access

Abstract

Multi phase alloys at the Mo-rich end of the Mo-Si-B system have drawn recent attention because of their high temperature performance capabilities. Previous studies on two- and three-phase alloys have confirmed the central role of the Mo-rich solid solution phase in affecting creep resistance and low-temperature toughness in these multiphase alloys. Thus, it is important to understand the intrinsic mechanical response of the matrix solid solution. In this study, compression and tensile tests were conducted over a nominal strain rate regime spanning 10-4 s-1 to 10-7 s-1 and temperature ranging from 1000°C to 1300°C in vacuum on a Mo-Si-B solid solution alloy (Mo-3Si-1.3B in at.%) that contained a low fraction (~5 %) of the T2 phase. The microstructure of the deformed specimens was examined to elucidate the underlying deformation mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Dimiduk, DM, Perepezko, JH, MRS Bulletin, (2003); 28: 639.10.1557/mrs2003.191CrossRefGoogle Scholar
[2] Perepezko, JH, Sakidja, R, Kim, S, Dong, Z, Park, JS. In: Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, TMS, Warrendale, PA; (2001). P. 505 Google Scholar
[3] Alur, AP, Chollacoop, N, Kumar, KS. Acta Mater (2004); 52: 5571.10.1016/j.actamat.2004.08.035CrossRefGoogle Scholar
[4] Nieh, TG, Wang, JG, Liu, CT. Intermetallics (2001); 9: 73.10.1016/S0966-9795(00)00098-4CrossRefGoogle Scholar
[5] Schneibel, JH. Intermetallics (2003); 11: 625.10.1016/S0966-9795(03)00044-XCrossRefGoogle Scholar
[6] Schneibel, JH, Lin, HT. Materials at High Temperatures (2002); 19(1): 25.10.1179/mht.2002.19.1.004CrossRefGoogle Scholar
[7] Kruzic, JJ, Schneibel, JH, Ritchie, RO. Scripta Mater (2004); 50: 459.CrossRefGoogle Scholar
[8] Parthasarathy, TA, Mendiratta, MG, Dimiduk, DM. Acta Mater (2002); 50: 1857.10.1016/S1359-6454(02)00039-3CrossRefGoogle Scholar
[9] Schneibel, JH, Liu, CT, Easton, DS, Carmichael, CA. Mater Sci Eng (1999); A261: 78.10.1016/S0921-5093(98)01051-XCrossRefGoogle Scholar
[10] Alur, AP, Kumar, KS. Acta Mater (2006); 54: 385.10.1016/j.actamat.2005.09.013CrossRefGoogle Scholar
[11] Ito, K, Ihara, K, Tanaka, K, Fujikura, M, Yamaguchi, M, Intermetallics (2001); 9: 591.10.1016/S0966-9795(01)00049-8CrossRefGoogle Scholar
[12] Rosales, I, Schneibel, JH., Intermetallics (2000; 8: 885.10.1016/S0966-9795(00)00058-3CrossRefGoogle Scholar
[13] Swadener, JG, Rosales, I, Schneibel, JH, MRS proceedings, Vol. 646, Materials Research Society, Warrendale, PA; (2001: N4.2.Google Scholar
[14] Northcott, L. Metallurgy of the Rarer Metals, vol. 5. London: Butterworth Scientific Publication; (1956).Google Scholar
[15] Jain, P, Alur, AP, Kumar, KS. Scripta Mater (2005); 54: 13.10.1016/j.scriptamat.2005.09.015CrossRefGoogle Scholar
[16] Hosford, WF in Mechanical Behavior of Materials, Cambridge Univeristy press, New York, NY, (2005). P.102.10.1017/CBO9780511810930CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Temperature Mechanical Behavior of a Mo-Si-B Solid Solution Alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Temperature Mechanical Behavior of a Mo-Si-B Solid Solution Alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Temperature Mechanical Behavior of a Mo-Si-B Solid Solution Alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *