Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-d8fc5 Total loading time: 0.234 Render date: 2021-09-21T12:43:25.480Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors

Published online by Cambridge University Press:  01 February 2011

Tobias Roschek
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Tobias Repmann
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Oliver Kluth
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Joachim Müller
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Bernd Rech
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Heribert Wagner
Affiliation:
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

Microcrystalline silicon (μìc-Si:H) solar cells were prepared in a wide range of deposition parameters using high pressure 13.56 MHz plasma-enhanced chemical vapor deposition (PECVD). Focus was on the influence of deposition pressure, electrode distance and the application of a pulsed plasma on high rate deposition of solar cells. At electrode distances between 5 and 20 mm solar cells with efficiencies >8 % were prepared. A medium electrode distance of 10 mm yielded best device performance. Pulsed plasma deposition leads to good results at medium deposition rates of ∼5 Å/s, for higher rates a strong decrease of efficiency was observed. The highest efficiencies in a small area reactor were 8.9 % for CW and 8.4 % for pulsed plasma. We also succeeded in preparing μc-Si:H and a-Si:H/μc-Si:H solar cells in a 30x30 cm2 reactor with efficiencies of 9 % and 12.5 %, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, J., Vallat-Sauvain, E., Dubail, S., Kroll, U., Dubail, J., Golay, S., Feitknecht, L., Torres, P., Faÿ, S., Fischer, D., Shah, A., Sol. Energy Mater. Sol. Cells 66, 7384 (2001)10.1016/S0927-0248(00)00160-4CrossRefGoogle Scholar
2. Saito, K., Sano, M., Matuda, K., Kondo, T., Nishimoto, T., Ogawa, K., Kajita, I., Proc. 2nd World Conference PVSEC, Vienna, Austria, 1998, p. 351 Google Scholar
3. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Sol. Energy Mater. Sol. Cells 62, 97108 (2000)CrossRefGoogle Scholar
4. Roschek, T., Repmann, T., Müller, J., Rech, B., Wagner, H., J. Vac. Sci. Technol. A 20 (2), (2002), in pressGoogle Scholar
5. Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A., Sol. Energy Mater. Sol. Cells 66, 117125 (2001).CrossRefGoogle Scholar
6. Guo, L., Kondo, M., Fukawa, M., Saitoh, K., Matsuda, A., Jpn. J. Appl. Phys. 37, L1116–L1118 (1998)CrossRefGoogle Scholar
7. Rech, B., Roschek, T., Müller, J., Wieder, S., Wagner, H., Technical Digest 11th International PVSEC, Sapporo (1999) 241, for more details see also: Solar Energy Materials & Solar Cells 66, 267–273 (2001)Google Scholar
8. Roschek, T., Repmann, T., Müller, J., Rech, B., Wagner, H., Proc. 28th IEEE PVSC, Anchorage, USA (2000), p. 150 Google Scholar
9. Fukawa, M., Suzuki, S., Guo, L., Kondo, M., Matsuda, A., Sol. Energy Mater. Sol. Cells 66, 217223 (2001)CrossRefGoogle Scholar
10. Lambertz, A., Vetterl, O., Finger, F., Proc. 17th European PVSEC, Munich, Germany (2001), in pressGoogle Scholar
11. Maemura, Y., Fijiyama, H., Takagi, T., Hayashi, R., Futako, W., Futako, W., Kondo, M., Matsuda, A., Thin Solid Films 345, 8084 (1999)CrossRefGoogle Scholar
12. Fukuda, Y., Sakuma, Y., Fukai, Ch., Fujimura, Y., Azuma, K., Shirai, H., Thin Solid Films 386, 256260 (2001)CrossRefGoogle Scholar
13. Madan, A., Morrison, S., Sol. Energy Mater. Sol. Cells 55, 127139 (1998) A. Madan, S. Morrison, H. Kuwahara, Sol. Energy Mater. Sol. Cells 59, 51–58 (1999). and references thereinCrossRefGoogle Scholar
14. Shiratani, M., Fukuzawa, T., Watanabe, Y., Jpn. J. Appl. Phys. 38, 45424549 (1999). M. Shiratani, S. Maeda, K. Koga, Y. Watanabe, Jpn. J. Appl. Phys. 39, 287–293 (2000)CrossRefGoogle Scholar
15. Hollenstein, Ch., Plasma Phys. Control. Fusion 42, R93–R104 (2000), and references thereinCrossRefGoogle Scholar
16. Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A., Schock, H.W., Thin Solid Films 351, 247 (1999)CrossRefGoogle Scholar
17. Roschek, T., Müller, J., Wieder, S., Rech, B., Wagner, H., Proc. 16th European PVSEC, Glasgow, UK (2000), p.561 Google Scholar
18. Repmann, T., Appenzeller, W., Roschek, T., Rech, B., Kluth, O., Müller, J., Psyk, W., Geyer, R., Lechner, P., Proc. 17th European PVSEC, Munich, Germany (2001), in pressGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *