Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ttsf8 Total loading time: 0.21 Render date: 2021-08-04T12:59:06.718Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High Integrity SiO2/Al2O3 Gate Stack for Normally-off GaN MOSFET

Published online by Cambridge University Press:  27 June 2013

Hiroshi Kambayashi
Affiliation:
Advanced Power Device Research Association, Yokohama 220-0073, Japan New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Takehiko Nomura
Affiliation:
Advanced Power Device Research Association, Yokohama 220-0073, Japan
Hirokazu Ueda
Affiliation:
Tokyo Electron Technology Development Institute Inc., Sendai 981-3137, Japan
Katsushige Harada
Affiliation:
Tokyo Electron Tohoku Ltd., Nirasaki, Yamanashi 407-0192, Japan
Yuichiro Morozumi
Affiliation:
Tokyo Electron Ltd., Minato-ku, Tokyo 107-6325, Japan
Kazuhide Hasebe
Affiliation:
Tokyo Electron Tohoku Ltd., Nirasaki, Yamanashi 407-0192, Japan
Akinobu Teramoto
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Shigetoshi Sugawa
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Tadahiro Ohmi
Affiliation:
New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
Get access

Abstract

High integrity SiO2/Al2O3 gate stack has been demonstrated for GaN metal-oxide-semiconductor (MOS) transistors. The SiO2 film formed on GaN by the microwave-excited plasma enhanced chemical vapor deposition (MW-PECVD) exhibits good properties compared that by the LP (Low Pressure)-CVD. Then, by incorporating the advantages of both of SiO2 with a high insulating and Al2O3 with good interface characteristics, the SiO2/Al2O3 gate stack structure has been employed in GaN MOS devices. The structure shows a low interface state density between gate insulator and GaN, a high breakdown field, and a large charge-to-breakdown by applying 3-nm Al2O3. The SiO2/Al2O3 gate stack has also been applied to AlGaN/GaN hybrid MOS heterojunction field-effect transistor (HFET) and the HFET shows excellent properties with the threshold voltage of 4.2 V and the maximum field-effect mobility of 192 cm2/Vs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Robertsona, J., and Falabretti, B., J. Appl. Phys. 100 014111 (2006).CrossRef
Ohmi, T., Hirayama, M. and Teramoto, A., J. Phys. D 39 R1 (2006).CrossRef
Kanechika, M., Sugimoto, M., Soejima, N., Ueda, H., Ishiguro, O., Kodama, M., Hayashi, E., Itoh, K., Uesugi, T., and Kachi, T., Jpn. J. Appl. Phys. 46 503 (2007).CrossRef
Kambayashi, H., Niiyama, Y., Ootomo, S., Nomura, T., Iwami, M., Satoh, Y., Kato, S., and Yoshida, S., IEEE Electron Device Lett. 28 1077 (2007).CrossRef
Kambayashi, H., Nomura, T., Kato, S., Ueda, H., Teramoto, A., Sugawa, S., and Ohmi, T., Jpn. J. Appl. Phys. 51 04DF03 (2012).CrossRef
Terman, L. M., Solid-State Electron. 5 285 (1962).CrossRef
Hashizume, T., and Hasegawa, H., Appl. Surf. Sci. 234 387 (2004).CrossRef
Kambayashi, H., Nomura, T., Ueda, H., Harada, Katsushige, Morozumi, Yuichiro, Hasebe, Kazuhide, Teramoto, A., Sugawa, S., and Ohmi, T., Jpn. J. Appl. Phys. 52, (2013) (in press).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Integrity SiO2/Al2O3 Gate Stack for Normally-off GaN MOSFET
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Integrity SiO2/Al2O3 Gate Stack for Normally-off GaN MOSFET
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Integrity SiO2/Al2O3 Gate Stack for Normally-off GaN MOSFET
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *